File System Forensic Analysis

By Brian Carrier

Publisher: Addison Wesley Professional
Pub Date: March 17, 2005

Print ISBN: 0-32-126817-2

Table of Contents
Copyright
Foreword
Preface
Roadmap
Scope of Book
Resources
Acknowledgments
Part I: Foundations
® Chapter 1. Digital Investigation Foundations
Digital Investigations and Evidence
Digital Crime Scene Investigation Process
Data Analysis
Overview of Toolkits
Summary
Bibliography
Chapter 2. Computer Foundations
Data Organization
Booting Process
Hard Disk Technology
Summary
Bibliography
™ Chapter 3. Hard Disk Data Acquisition
Introduction
Reading the Source Data
Writing the Output Data
A Case Study Using dd
Summary
Bibliography
Part II: Volume Analysis
® Chapter 4. Volume Analysis
Introduction
Background
Analysis Basics
Summary
® Chapter 5. PC-based Partitions
DOS Partitions
Analysis Considerations
Apple Partitions
Removable Media
Bibliography

® Chapter 6. Server-based Partitions
BSD Partitions
Sun Solaris Slices
GPT Partitions
Summary
Bibliography

® Chapter 7. Multiple Disk Volumes
RAID
Disk Spanning
Bibliography

Part III: File System Analysis

™ Chapter 8. File System Analysis
What is a File System?
File System Category
Content Category
Metadata Category
File Name Category
Application Category
Application-level Search Techniques
Specific File Systems
Summary
Bibliography

™ Chapter 9. FAT Concepts and Analysis
Introduction
File System Category
Content Category
Metadata Category
File Name Category
The Big Picture
Other Topics
Summary
Bibliography

® Chapter 10. FAT Data Structures
Boot Sector
FAT32 FSINFO
FAT
Directory Entries
Long File Name Directory Entries
Summary
Bibliography

T Chapter 11. NTFS Concepts
Introduction
Everything is a File
MFT Concepts
MFT Entry Attribute Concepts
Other Attribute Concepts
Indexes
Analysis Tools
Summary
Bibliography

T Chapter 12. NTFS Analysis
File System Category
Content Category
Metadata Category
File Name Category
Application Category
The Big Picture
Other Topics
Summary
Bibliography

T Chapter 13. NTFS Data Structures
Basic Concepts
Standard File Attributes
Index Attributes and Data Structures
File System Metadata Files
Summary
Bibliography

T Chapter 14. Ext2 and Ext3 Concepts and Analysis
Introduction
File System Category
Content Category
Metadata Category
File Name Category
Application Category
The Big Picture
Other Topics
Summary
Bibliography

® Chapter 15. Ext2 and Ext3 Data Structures
Superblock
Group Descriptor Tables

Block Bitmap
Inodes
Extended Attributes
Directory Entry
Symbolic Link
Hash Trees
Journal Data Structures
Summary
Bibliography

® Chapter 16. UFS1 and UFS2 Concepts and Analysis
Introduction
File System Category
Content Category
Metadata Category
File Name Category
The Big Picture
Other Topics
Summary
Bibliography

® Chapter 17. UFS1 and UFS2 Data Structures
UFS1 Superblock
UFS2 Superblock
Cylinder Group Summary
UFS1 Group Descriptor
UFS2 Group Descriptor
Block and Fragment Bitmaps
UFS1 Inodes
UFS2 Inodes
UFS2 Extended Attributes
Directory Entries
Summary
Bibliography

B Appendix A. The Sleuth Kit and Autopsy
The Sleuth Kit
Autopsy
Bibliography

Copyright
Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was

aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection with
or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U. S. Corporate and Government Sales
(800) 382-3419
corpsales @pearsontechgroup.com
For sales outside the U. S., please contact:
International Sales
international @pearsoned.com
Visit us on the Web: www.awprofessional.com
Library of Congress Catalog Number: 2004116962
Copyright © 2005 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to

Pearson Education, Inc.

Rights and Contracts Department

One Lake Street

Upper Saddle River, NJ 07458
ISBN 0-32-126817-2

Text printed in the United States on recycled paper at R. R. Donnelley in Crawfordsville,
Indiana.

First printing, March 2005

Dedication

THIS BOOK IS DEDICATED TO MY GRANDPARENTS, HENRI, GABRIELLE, ALBERT, AND RITA

Foreword

Computer forensics is a relatively new field, and over the years it has been called many
things: "computer forensics," "digital forensics," and "media analysis" to name a few. It has
only been in the past few years that we have begun to recognize that all of our digital devices
leave digital breadcrumbs and that these breadcrumbs are valuable evidence in a wide range
of inquiries. While criminal justice professionals were some of the first to take an interest in
this digital evidence, the intelligence, information security, and civil law fields have
enthusiastically adopted this new source of information.

Digital forensics has joined the mainstream. In 2003, the American Society of Crime
Laboratory Directors—Laboratory Accreditation Board (ASCLD-LAB) recognized digital
evidence as a full-fledged forensic discipline. Along with this acceptance came increased
interest in training and education in this field. The Computer Forensic Educator's Working
Group (now known as the Digital Forensic Working Group) was formed to assist educators in
developing programs in this field. There are now over three-dozen colleges and universities
that have, or are, developing programs in this field. More join their ranks each month.

I have had the pleasure of working with many law enforcement agencies, training
organizations, colleges, and universities to develop digital forensic programs. One of the first
questions that I am asked is if I can recommend a good textbook for their course or courses.
There have been many books written about this field. Most take a targeted approach to a
particular investigative approach, such as incident response or criminal investigation. Some
tend to be how-to manuals for specific tools. It has been hard to find a book that provides a
solid technical and process foundation for the field . . . That is, until now.

This book is the foundational book for file system analysis. It is thorough, complete, and well
organized. Brian Carrier has done what needed to be done for this field. This book provides a
solid understanding of both the structures that make up different file systems and how these
structures work. Carrier has written this book in such a way that the readers can use what they
know about one file system to learn another. This book will be invaluable as a textbook and
as a reference and needs to be on the shelf of every digital forensic practitioner and educator.
It will also provide accessible reading for those who want to understand subjects such as data
recovery.

When I was first approached about writing this Foreword, I was excited! I have known Brian
Carrier for a number of years and I have always been impressed with his wonderful balance
of incredible technical expertise and his ability to clearly explain not just what he knows but,
more importantly, what you need to know. Brian's work on Autopsy and The Sleuth Kit
(TSK) has demonstrated his command of this field—his name is a household name in the
digital forensic community. I have been privileged to work with Brian in his current role at
Purdue University, and he is helping to do for the academic community what he did for the
commercial sector: He set a high standard.

So, it is without reservation that I recommend this book to you. It will provide you with a
solid foundation in digital media.

Mark M. Pollitt
President, Digital Evidence Professional Services, Inc.
Retired Director of the FBI's Regional Computer Forensic Laboratory Program

Preface

One of the biggest challenges that I have faced over the years while developing The Sleuth
Kit (TSK) has been finding good file and volume system (such as partition tables, RAID, and
so on) documentation. It also has been challenging to explain to users why certain files
cannot be recovered or what to do when a corrupt file system is encountered because there
are no good references to recommend. It is easy to find resources that describe file systems at
a high level, but source code is typically needed to learn the details. My goal for this book is
to fill the void and describe how data are stored on disk and describe where and how digital
evidence can be found.

There are two target audiences for this book. One is the experienced investigator that has
learned about digital investigations from real cases and using analysis tools. The other is
someone who is new to the field and is interested in learning about the general theory of an
investigation and where digital evidence may exist but is not yet looking for a book that has a
tutorial on how to use a specific tool.

The value of the material in this book is that it helps to provide an education rather than
training on a specific tool. Consider some of the more formal sciences or engineering
disciplines. All undergraduates are required to take a couple of semesters of physics,
chemistry, or biology. These courses are not required because the students will be using all
the material for the rest of their careers. In fact, software and equipment exist to perform
many of the calculations students are forced to memorize. The point of the classes is to
provide students with insight about how things work so that they are not constrained by their
tools.

The goal of this book is to provide an investigator with an education similar to what
Chemistry 101 is to a chemist in a forensics lab. The majority of digital evidence is found on
a disk, and knowing how and why the evidence exists can help an investigator to better testify
about it. It also will help an investigator find errors and bugs in his analysis tools because he
can conduct sanity checks on the tool output.

The recent trends in digital investigations have shown that more education is needed.
Forensic labs are being accredited for digital evidence, and there are debates about the
required education and certification levels. Numerous universities offer courses and even
Master's degrees in computer forensics. Government

Roadmap

This book is organized into three parts. Part 1 provides the basic foundations, and Parts 2 and
3 provide the technical meat of the book. The book is organized so that we move up the
layers of abstraction in a computer. We start by discussing hard disks and then discuss how
disks are organized into partitions. After we discuss partitions, we discuss the contents of
partitions, which are typically a file system.

Part 1, "Foundations," starts with Chapter 1, "Digital Investigation Foundations," and
discusses the approach I take to a digital investigation. The different phases and guidelines
are presented so that you know where I use the techniques described in this book. This book
does not require that you use the same approach that I do. Chapter 2, "Computer
Foundations," provides the computer foundations and describes data structures, data
encoding, the boot process, and hard disk technology. Chapter 3, "Hard Disk Data
Acquisition," provides the theory and a case study of hard disk acquisition so that we have
data to analyze in Parts 2 and 3.

Part 2, "Volume Analysis," of the book is about the analysis of data structures that partition
and assemble storage volumes. Chapter 4, "Volume Analysis," provides a general overview

of the volume analysis techniques, and Chapter 5, "PC-based Partitions," examines the
common DOS and Apple partitions. Chapter 6, "Server-based Partitions," covers the
partitions found in BSD, Sun Solaris, and Itanium-based systems. Chapter 7, "Multiple Disk
Volumes," covers RAID and volume spanning.

Part 3, "File System Analysis," of the book is about the analysis of data structures in a
volume that are used to store and retrieve files. Chapter 8, "File System Analysis," covers the
general theory of file system analysis and defines terminology for the rest of Part 3. Each file
system has at least two chapters dedicated to it where the first chapter discusses the basic
concepts and investigation techniques and the second chapter includes the data structures and
manual analysis of example disk images. You have a choice of reading the two chapters in
parallel, reading one after the other, or skipping the data structures chapter altogether.

The designs of the file systems are very different, so they are described using a general file
system model. The general model organizes the data in a file system into one of five
categories: file system, content, metadata, file name, and application. This general model is
used to describe each of the file systems so that it is easier to compare them.

Chapters 9, "FAT Concepts and Analysis," and 10, "FAT Data Structures," detail the FAT
file system, and Chapters 11, "NTFS Concepts," 12, "NTFS Analysis," and 13, "NTFS Data
Structures," cover NTES. Next, we skip to the Unix file systems with Chapters 14, "Ext2 and
Ext3 Concepts and Analysis," and 15, "Ext2 and Ext3 Data Structures," on the Linux Ext2
and Ext3 file systems. Lastly, Chapters 16, "UFS1 and UFS2 Concepts and Analysis," and
17, "UFS1 and UFS2 Data Structures," examine UFS1 and UFS2, which are found in
FreeBSD, NetBSD, OpenBSD, and Sun Solaris.

After Part 3 of this book, you will know where a file existed on disk and the various data
structures that need to be in sync for you to view it. This book does not discuss how to
analyze the file's contents.

Scope of Book

Now that you know what is included in this book, I will tell you what is not in this book. This
book stops at the file system level and does not look at the application level. Therefore, we do
not look at how to analyze various file formats. We also do not look at what files a specific
OS or application creates. If you are interested in a step-by-step guide to investigating a
Windows '98 computer that has been used to download suspect files, then you will be
disappointed with this book. If you want a guide to investigating a compromised Linux
server, then you may learn a few tricks in this book, but it is not what you are looking for.
Those topics fall into the application analysis realm and require another book to do them
justice. If you are interested in having more than just a step-by-step guide, then this book is
probably for you.

Resources

As I mentioned in the beginning, the target audience for this book is not someone who is new
to the field and looking for a book that will show the basic investigation concepts or how to
use a specific tool. There are several quality books that are breadth-based, including:

Casey, Eoghan. Digital Evidence and Computer Crime. 2nd ed. London:
Academic Press, 2004.

Kruse, Warren and Jay Heiser. Computer Forensics. Boston: Addison Wesley,
2002.

Mandia, Kevin, Chris Prosise, and Matt Pepe. Incident Response and
Computer Forensics. Emeryville: McGraw Hill/Osborne, 2003.

Throughout this book, I will be using The Sleuth Kit (TSK) on example disk images so that
both the raw data and formatted data can be shown. That is not to say that this is a tutorial on
using TSK. To learn only about using TSK, the previous books or the computer forensic
chapters in Know Your Enemy, 2nd Edition should be referred to. The appendix in this book
describes TSK and Autopsy (a graphical interface for TSK). TSK and additional
documentation can be downloaded from http://www.sleuthkit.org.

The URLs of other tools that are used throughout the book will be given as needed.
Additional resources, links, and corrections will be available from http://www.digital-

evidence.org/fsfa/.

Any corrections can be e-mailed to me at fsfa@digital-evidence.org.

10

Acknowledgments

I would like to thank many people for helping me with digital forensics. First, thanks go out
to those who have helped me in general over the years. My appreciation goes to Eoghan
Casey, Dave Dittrich, Dan Farmer, Dan Geer, Dan Kalil, Warren Kruse, Gary Palmer,
Eugene Spafford, Lance Spitzner, and Wietse Venema for various forms of guidance,
knowledge, and opportunities.

I would also like to thank Cory Altheide, Eoghan Casey, Knut Eckstein, and Jim Lyle for
reviewing the entire book. Special thanks go to Knut, who went through every hexdump
dissection of the example disk images and verified each hexadecimal to decimal conversion
(and found several typos), and to Eoghan for reminding me when the content needed more
practical applications. Christopher Brown, Simson Garfinkel, Christophe Grenier, Barry
Grundy, Gord Hama, Jesse Kornblum, Troy Larson, Mark Menz, Richard Russon, and Chris
Sanft all reviewed and improved one or more chapters in their areas of expertise.

Many folks at Addison Wesley and Pearson helped to make this book possible. Jessica
Goldstein guided and encouraged me through the process, Christy Hackerd made sure the
editing and production process went smoothly, and Chanda Leary-Coutu provided her
marketing expertise. Thanks to Elise Walter for her copyediting, Christal Andry for her
proofreading, Eric Schroeder for his indexing, Jake McFarland for his composition work, and
Chuti Prasertsith for his cover design work.

Finally, many thanks to my family and especially to my best friend (and Mrs.-to-be) Jenny,
who helped me find balance in life despite the nights and weekends that I spent hunched over
a keyboard (and went as far as buying me an X-Box as a distraction from data structures and
abstraction layers). Also, thanks to our cat, Achoo, for reminding me each day that playing
with hair elastics and laser pointers is almost as fun as playing with ones and zeros.

11

Part I: Foundations

Chapter 1. Digital Investigation
Foundations

I am going to assume that anyone interested in this book does not need motivation with
respect to why someone would want to investigate a computer or other digital device, so |
will skip the customary numbers and statistics. This book is about how you can conduct a
smarter investigation, and it is about data and how they are stored. Digital investigation tools
have become relatively easy to use, which is good because they reduce the time needed to
conduct an investigation. However, it also means that the investigator may not fully
understand the results. This could be dangerous when the investigator needs to testify about
the evidence and from where it came. This book starts with the basic foundations of
investigations and computers and then examines volume and file systems. There are many
ways of conducting an investigation, and this chapter describes one of them. You do not need
to take the same approach, but this chapter shows where I think the contents of this book fit
into the bigger picture.

Digital Investigations and Evidence

There is an abundant number of digital forensic and investigation definitions, and this section
gives the definitions that I use and a justification for them. The focus of a digital investigation
is going to be some type of digital device that has been involved in an incident or crime. The
digital device was either used to commit a physical crime or it executed a digital event that
violated a policy or law. An example of the first case is if a suspect used the Internet to
conduct research about a physical crime. Examples of the latter case are when an attacker
gains unauthorized access to a computer, a user downloads contraband material, or a user
sends a threatening e-mail. When the violation is detected, an investigation is started to
answer questions such as why the violation occurred and who or what caused it to occur.

A digital investigation is a process where we develop and test hypotheses that answer
questions about digital events. This is done using the scientific method where we develop a
hypothesis using evidence that we find and then test the hypothesis by looking for additional
evidence that shows the hypothesis is impossible. Digital evidence is a digital object that
contains reliable information that supports or refutes a hypothesis.

Consider a server that has been compromised. We start an investigation to determine how it
occurred and who did it. During the investigation, we find data that were created by events
related to the incident. We recover deleted log entries from the server, find attack tools, and
find numerous vulnerabilities that existed on the server. Using this data, and more, we
develop hypotheses about which vulnerability the attacker used to gain access and what she
did afterwards. Later, we examine the firewall configuration and logs and determine that
some of the scenarios in our hypotheses are impossible because that type of network traffic
could not have existed, and we do not find the necessary log entries. Therefore, we have
found evidence that refutes one or more hypotheses.

In this book, I use the term evidence in the investigative context. Evidence has both legal and
investigative uses. The definition that I previously gave was for the investigative uses of
evidence, and there could be situations where not all of it can be entered into a court of law.
Because the legal admissibility requirements vary by country and state and because 1 do not
have a legal background, I am going to focus on the general concept of evidence, and you can

12

make the adjustments needed in your jurisdiction'"). In fact, there are no legal requirements
that are specific to file systems, so the general digital investigation books listed in the Preface
can provide the needed information.

So far, you may have noticed that I have not used the term "forensic" during the discussion
about a digital investigation. The American Heritage Dictionary defines forensic as an
adjective and 'relating to the use of science or technology in the investigation and
establishment of facts or evidence in a court of law" [Houghton Mifflin Company 2000]. The
nature of digital evidence requires us to use technology during an investigation, so the main
difference between a digital investigation and a digital forensic investigation is the
introduction of legal requirements. A digital forensic investigation is a process that uses
science and technology to analyze digital objects and that develops and tests theories, which
can be entered into a court of law, to answer questions about events that occurred. In other
words, a digital forensic investigation is a more restricted form of digital investigation. I will
be using the term digital investigation in this book because the focus is on the technology and
not specific legal requirements.

Digital Crime Scene Investigation Process

There is no single way to conduct an investigation. If you ask five people to find the person
who drank the last cup of coffee without starting a new pot, you will probably see five
different approaches. One person may dust the pot for fingerprints, another may ask for
security camera tapes of the break room, and another may look for the person with the hottest
cup of coffee. As long as we find the right person and do not break any laws in the process, it
does not matter which process is used, although some are more efficient than others.

The approach that I use for a digital investigation is based on the physical crime scene

investigation process [Carrier and Spafford 2003]. In this case, we have a digital crime scene

that includes the digital environment created by software and hardware. The process has three

major phases, which are system preservation, evidence searching, and event reconstruction.

These phases do not need to occur one after another, and the flow is shown in Figure 1.1.
Figure 1.1. The three major phases of a digital crime scene investigation.

>
Evidence Searching Event Reconstruction

Phase Phase

System Preservation
Phase

r— o —

This process can be used when investigating both live and dead systems. A live analysis
occurs when you use the operating system or other resources of the system being investigated
to find evidence. A dead analysis occurs when you are running trusted applications in a
trusted operating system to find evidence. With a live analysis, you risk getting false
information because the software could maliciously hide or falsify data. A dead analysis is
more ideal, but is not possible in all circumstances.

System Preservation Phase

The first phase in the investigation process is the System Preservation Phase where we try to
preserve the state of the digital crime scene. The actions that are taken in this phase vary
depending on the legal, business, or operational requirements of the investigation. For
example, legal requirements may cause you to unplug the system and make a full copy of all
data. On the other extreme could be a case involving a spyware infection or a honeypot[z] and

' A good overview of U.S. law is Cybercrime [Clifford 2001].

21" A honeypot is "an information resource whose value lies in unauthorized or illicit use of that resource"
[Honeynet Project 2004].

13

no preservation is performed. Most investigations in a corporate or military setting that will
not go to court use techniques in between these two extremes.

The purpose of this phase is to reduce the amount of evidence that may be overwritten. This
process continues after data has been acquired from the system because we need to preserve
the data for future analysis. In Chapter 3, "Hard Disk Data Acquisition," we will look at how
to make a full copy of a hard disk, and the remainder of the book will cover how to analyze
the data and search for evidence.

Preservation Techniques

The goal of this phase is to reduce the amount of evidence that is overwritten, so we want to
limit the number processes that can write to our storage devices. For a dead analysis, we will
terminate all processes by turning the system off, and we will make duplicate copies of all
data. As will be discussed in Chapter 3, write blockers can be used to prevent evidence from
being overwritten.

For a live analysis, suspect processes can be killed or suspended. The network connection can
be unplugged (plug the system into an empty hub or switch to prevent log messages about a
dead link), or network filters can be applied so that the perpetrator cannot connect from a
remote system and delete data. Important data should be copied from the system in case it is
overwritten while searching for evidence. For example, if you are going to be reading files,
then you can save the temporal data for each file so that you have a copy of the last access
times before you cause them to be updated.

When important data are saved during a dead or live analysis, a cryptographic hash should be
calculated to later show that the data have not changed. A cryptographic hash, such as MDS5,
SHA-1, and SHA-256, is a mathematical formula that generates a very big number based on
input data. If any bit of the input data changes, the output number changes dramatically. (A
more detailed description can be found in Applied Cryptography, 2nd Edition [Schneier
1995].) The algorithms are designed such that it is extremely difficult to find two inputs that
generate the same output. Therefore, if the hash value of your important data changes, then
you know that the data has been modified.

Evidence Searching Phase

After we have taken steps to preserve the data we need to search them for evidence. Recall
that we are looking for data that support or refute hypotheses about the incident. This process
typically starts with a survey of common locations based on the type of incident, if one is
known. For example, if we are investigating Web-browsing habits, we will look at the Web
browser cache, history file, and bookmarks. If we are investigating a Linux intrusion, we may
look for signs of a rootkit or new user accounts. As the investigation proceeds and we
develop hypotheses, we will search for evidence that will refute or support them. It is
important to look for evidence that refutes your hypothesis instead of only looking for
evidence that supports your hypothesis.

The theory behind the searching process is fairly simple. We define the general
characteristics of the object for which we are searching and then look for that object in a
collection of data. For example, if we want all files with the JPG extension, we will look at
each file name and identify the ones that end with the characters ".JPG." The two key steps
are determining for what we are looking and where we expect to find it.

Part 2, "Volume Analysis," and Part 3, "File System Analysis," of this book are about
searching for evidence in a volume and file system. In fact, the file system analysis chapters
are organized so that you can focus on a specific category of data that may contain your
evidence. The end of this chapter contains a summary of the popular investigation toolkits,

14

and they all allow you to view, search, and sort the data from a suspect system so that you
can find evidence.

Search Techniques

Most searching for evidence is done in a file system and inside files. A common search
technique is to search for files based on their names or patterns in their names. Another
common search technique is to search for files based on a keyword in their content. We can
also search for files based on their temporal data, such as the last accessed or written time.

We can search for known files by comparing the MD5 or SHA-1 hash of a file's content with
a hash database such as the National Software Reference Library (NSRL)
(http://www.nsrl.nist.gov). Hash databases can be used to find files that are known to be
bad or good. Another common method of searching is to search for files based on signatures
in their content. This allows us to find all files of a given type even if someone has changed
their name.

When analyzing network data, we may search for all packets from a specific source address
or all packets going to a specific port. We also may want to find packets that have a certain
keyword in them.

Event Reconstruction Phase

The last phase of the investigation is to use the evidence that we found and determine what
events occurred in the system. Our definition of an investigation was that we are trying to
answer questions about digital events in the system. During the Evidence Searching Phase,
we might have found several files that violate a corporate policy or law, but that does not
answer questions about events. One of the files may have been the effect of an event that
downloaded it, but we should also try to determine which application downloaded it. Is there
evidence that a Web browser downloaded them, or could it be from malware? (Several cases
have used malware as a defense when contraband or other digital evidence has been found
[George 2004; Brenner, Carrier, and Henninger 2004].) After the digital event reconstruction
phase, we may be able to correlate the digital events with physical events.

Event reconstruction requires knowledge about the applications and the OS that are installed
on the system so that you can create hypotheses based on their capabilities. For example,
different events can occur in Windows 95 than Windows XP, and different versions of the
Mozilla Web browser can cause different events. This type of analysis is out of the scope of
this book, but general guidelines can be found in Casey [2004].

General Guidelines

Not every investigation will use the same procedures, and there could be situations where you
need to develop a new procedure. This book might be considered a little academic because it
does not cover only what exists in current tools. There are some techniques that have not
been implemented, so you may have to improvise to find the evidence. Here are my PICL
guidelines, which will hopefully keep you out of one when you are developing new
procedures. PICL stands for preservation, isolation, correlation, and logging.

The first guideline is preservation of the system being investigated. The motivation behind
this guideline is that you do not want to modify any data that could have been evidence, and
you do not want to be in a courtroom where the other side tries to convince the jury that you
may have overwritten exculpatory evidence. This is what we saw in the Preservation Phase of
the investigation process. Some examples of how the preservation guideline is implemented
are

e Copy important data, put the original in a safe place, and analyze the copy so that you
can restore the original if the data is modified.

15

e (Calculate MDS5 or SHA hashes of important data so that you can later prove that the
data has not changed.

e Use a write-blocking device during procedures that could write to the suspect data.

e Minimize the number of files created during a live analysis because they could
overwrite evidence in unallocated space.

e Be careful when opening files on the suspect system during a live analysis because
you could be modifying data, such as the last access time.

The second guideline is to isolate the analysis environment from both the suspect data and
the outside world. You want to isolate yourself from the suspect data because you do not
know what it might do. Running an executable from the suspect system could delete all files
on your computer, or it could communicate with a remote system. Opening an HTML file
from the suspect system could cause your Web browser to execute scripts and download files
from a remote server. Both of these are potentially dangerous, and caution should be taken.
Isolation from the suspect data is implemented by viewing data in applications that have
limited functionality or in a virtual environment, such as VMWare
(http://www.vmware.com), that can be easily rebuilt if it is destroyed.

You should isolate yourself from the outside world so that no tampering can occur and so that
you do not transmit anything that you did not want to. For example, the previous paragraph
described how something as simple as an HTML page could cause you to connect to a remote
server. Isolation from the outside world is typically implemented using an analysis network
that is not connected to the outside world or that is connected using a firewall that allows
only limited connectivity.

Note that isolation is difficult with live analysis. By definition, you are not isolated from the
suspect data because you are analyzing a system using its OS, which is suspect code. Every
action you take involves suspect data. Further, it is difficult to isolate the system from the
outside world because that requires removing network connectivity, and live analysis
typically occurs because the system must remain active.

The third guideline is to correlate data with other independent sources. This helps reduce the
risk of forged data. For example, we will later see that timestamps can be easily changed in
most systems. Therefore, if time is very important in your investigation, you should try to
find log entries, network traffic, or other events that can confirm the file activity times.

The final guideline is to log and document your actions. This helps identify what searches
you have not yet conducted and what your results were. When doing a live analysis or
performing techniques that will modify data, it is important to document what you do so that
you can later document what changes in the system were because of your actions.

Data Analysis

In the previous section, I said we were going to search for digital evidence, which is a rather
general statement because evidence can be found almost anywhere. In this section, I am
going to narrow down the different places where we can search for digital evidence and
identify which will be discussed later in this book. We will also discuss which data we can
trust more than others.

Analysis Types

When analyzing digital data, we are looking at an object that has been designed by people.
Further, the storage systems of most digital devices have been designed to be scalable and
flexible, and they have a layered design. I will use this layered design to define the different
analysis types [Carrier 2003a].

16

If we start at the bottom of the design layers, there are two independent analysis areas. One is
based on storage devices and the other is based on communication devices. This book is
going to focus on the analysis of storage devices, specifically non-volatile devices, such as
hard disks. The analysis of communication systems, such as IP networks, is not covered in
this book, but is elsewhere [Bejtlich 2005; Casey 2004; Mandia et al. 2003].

Figure 1.2 shows the different analysis areas. The bottom layer is Physical Storage Media
Analysis and involves the analysis of the physical storage medium. Examples of physical
store mediums include hard disks, memory chips, and CD-ROMs. Analysis of this area might
involve reading magnetic data from in between tracks or other techniques that require a clean
room. For this book, we are going to assume that we have a reliable method of reading data
from the physical storage medium and so we have a stream 1Is and Os that were previously
written to the storage device.

Figure 1.2. Layers of analysis based on the design of digital data. The bold boxes are covered

in this book.
Application/O5
Analysis Swap Spacs
1 Analysis

File System Database

Analysis Analysis

Yolume Analysis Memory Analysis
Fhysical Storage Media Analysis Metwark Analysis

We now analyze the 1s and Os from the physical medium. Memory is typically organized by
processes and is out of the scope of this book. We will focus on non-volatile storage, such as
hard disks and flash cards.

Storage devices that are used for non-volatile storage are typically organized into volumes. A
volume is a collection of storage locations that a user or application can write to and read
from. We will discuss volume analysis in Part 2 of the book, but there are two major concepts
in this layer. One is partitioning, where we divide a single volume into multiple smaller
volumes, and the other is assembly, where we combine multiple volumes into one larger
volume, which may later be partitioned. Examples of this category include DOS partition
tables, Apple partitions, and RAID arrays. Some media, such as floppy disks, do not have any
data in this layer, and the entire disk is a volume. We will need to analyze data at the volume
level to determine where the file system or other data are located and to determine where we
may find hidden data.

Inside each volume can be any type of data, but the most common contents are file systems.
Other volumes may contain a database or be used as a temporary swap space (similar to the
Windows pagefile). Part 3 of the book focuses on file systems, which is a collection of data
structures that allow an application to create, read, and write files. We analyze a file system
to find files, to recover deleted files, and to find hidden data. The result of file system
analysis could be file content, data fragments, and metadata associated with files.

To understand what is inside of a file, we need to jump to the application layer. The structure
of each file is based on the application or OS that created the file. For example, from the file
system perspective, a Windows registry file is no different from an HTML page because they
are both files. Internally, they have very different structures and different tools are needed to

17

analyze each. Application analysis is very important, and it is here where we would analyze
configuration files to determine what programs were running or to determine what a JPEG
picture is of. I do not discuss application analysis in this book because it requires multiple
books of its own to cover in the same detail that file systems and volumes are covered. Refer
to the general digital investigation books listed in the Preface for more information.

We can see the analysis process in Figure 1.3. This shows a disk that is analyzed to produce a
stream of bytes, which are analyzed at the volume layer to produce volumes. The volumes are
analyzed at the file system layer to produce a file. The file is then analyzed at the application
layer.

Figure 1.3. Process of analyzing data at the physical level to the application level.

Physical
Media
Analysis

oy

Sectors of Data]

[|

|

Volume
Analysis

File
System
Analysis

Application
Analysis

Essential and Nonessential Data

All data in the layers previously discussed have some structure, but not all structure is
necessary for the layer to serve its core purpose. For example, the purpose of the file system
layer is to organize an empty volume so that we can store data and later retrieve them. The
file system is required to correlate a file name with file content. Therefore, the name is
essential and the on-disk location of the file content is essential. We can see this in Figure 1.4
where we have a file named miracle.txt and its content is located at address 345. If either
the name or the address were incorrect or missing, then the file content could not be read. For
example, if the address were set to 344, then the file would have different content.

18

Figure 1.4. To find and read this file, it is essential for the name, size, and content location to
be accurate, but it is not essential for the last accessed time to be accurate.

Mame: Cluster: Size: Last Accessed:
miracle.txt 345 40 October 27, 2004
Cluster 344 Cluster 345
Today, the Yankees Today, the Red Sox
wan the World Series. won the World Series.

Figure 1.4 also shows that the file has a last accessed time. This value is not essential to the
purpose of the file system, and if it were changed, missing, or incorrectly set, it would not
affect the process of reading or writing file content.

In this book, I introduce the concept of essential and nonessential data because we can trust
essential data but we may not be able to trust nonessential data. We can trust that the file
content address in a file is accurate because otherwise the person who used the system would
not have been able to read the data. The last access time may or may not be accurate. The OS
may not have updated it after the last access, the user may have changed the time, or the OS
clock could have been off by three hours, and the wrong time was stored.

Note that just because we trust the number for the content address does not mean that we trust
the actual content at that address. For example, the address value in a deleted file may be
accurate, but the data unit could have been reallocated and the content at that address is for a
new file. Nonessential data may be correct most of the time, but you should try to find
additional data sources to support them when they are used in an incident hypothesis (i.e., the
correlation in the PICL guidelines). In Parts 2 and 3 of the book, I will identify which data are
essential and which are not.

Overview of Toolkits

There are many tools that can help an investigator analyze a digital system. Most tools focus
on the preservation and searching phases of the investigation. For the rest of this book, I will
be showing examples using The Sleuth Kit (TSK), which I develop and which is described
later in this section. TSK is free, which means that any reader can try the examples in this
book without having to spend more money.

This book is not intended to be a TSK tutorial, and not everyone wants to use Unix-based,
non-commercial tools. Therefore, I am including a list of the most common analysis tools.
Most of the techniques described in this book can be performed using these tools. Tools that
are restricted to law enforcement are not listed here. The descriptions are not an exhaustive
list of features and are based on the content of their Web site. I have not confirmed or used
every feature, but each of the vendors has reviewed these descriptions.

If you are interested in a more extensive list of tools, refer to Christine Siedsma's Electronic
Evidence Information site (http://www.e-evidence.info) or Jacco Tunnissen's Computer
Forensics, Cybercrime and Steganography site (http://www.forensics.nl). [also maintain
a list of open source forensics tools that are both commercial and non-commercial
(http://www.opensourceforensics.org). This book helps show the theory of how a tool

19

is analyzing a file system, but I think open source tools are useful for investigations because
they allow an investigator or a trusted party to read the source code and verify how a tool has
implemented the theory. This allows an investigator to better testify about the digital
evidence [Carrier 2003b].

EnCase by Guidance Software

There are no official numbers on the topic, but it is generally accepted that EnCase
(http://www.encase.com) is the most widely used computer investigation software. EnCase
is Windows-based and can acquire and analyze data using the local or network-based
versions of the tool. EnCase can analyze many file system formats, including FAT, NTES,
HFS+, UFS, Ext2/3, Reiser, JFS, CD-ROMs, and DVDs. EnCase also supports Microsoft
Windows dynamic disks and AIX LVM.

EnCase allows you to list the files and directories, recover deleted files, conduct keyword
searches, view all graphic images, make timelines of file activity, and use hash databases to
identify known files. It also has its own scripting language, called EnScript, which allows you
to automate many tasks. Add-on modules support the decryption of NTFS encrypted files and
allow you to mount the suspect data as though it were a local disk.

Forensic Toolkit by AccessData

The Forensic Toolkit (FTK) is Windows-based and can acquire and analyze disk, file system,
and application data (http://www.accessdata.com). FTK supports FAT, NTFS, and Ext2/3
file systems, but is best known for its searching abilities and application-level analysis
support. FTK creates a sorted index of the words in a file system so that individual searches
are much faster. FTK also has many viewers for different file formats and supports many e-
mail formats.

FTK allows you to view the files and directories in the file system, recover deleted files,
conduct keyword searches, view all graphic images, search on various file characteristics, and
use hash databases to identify known files. AccessData also has tools for decrypting files and
recovering passwords.

ProDiscover by Technology Pathways

ProDiscover (http://www.techpathways.com) 1s a Windows-based acquisition and
analysis tool that comes in both local and network-based versions. ProDiscover can analyze
FAT, NTFS, Ext2/3, and UFS file systems and Windows dynamic disks. When searching, it
provides the basic options to list the files and directories, recover deleted files, search for
keywords, and use hash databases to identify known files. ProDiscover is available with a
license that includes the source code so that an investigator or lab can verify the tool's
actions.

SMART by ASR Data

SMART (http://www.asrdata.com) is a Linux-based acquisition and analysis tool. Andy
Rosen, who was the original developer for Expert Witness (which is now called EnCase),
developed SMART. SMART takes advantage of the large number of file systems that Linux
supports and can analyze FAT, NTFS, Ext2/3, UFS, HFS+, JFS, Reiser, CD-ROMs, and
more. To search for evidence, it allows you to list and filter the files and directories in the
image, recover deleted files, conduct keyword searches, view all graphic images, and use
hash databases to identify known files.

The Sleuth Kit / Autopsy

The Sleuth Kit (TSK) is a collection of Unix-based command line analysis tools, and Autopsy
is a graphical interface for TSK (http://www.sleuthkit.org). The file system tools in TSK
are based on The Coroner's Toolkit (TCT) (http://www.porcupine.org), which was

20

written by Dan Farmer and Wietse Venema. TSK and Autopsy can analyze FAT, NTFS,
Ext2/3, and UFS file systems and can list files and directories, recover deleted files, make
timelines of file activity, perform keyword searches, and use hash databases. We will be
using TSK throughout this book, and Appendix A, "The Sleuth Kit and Autopsy," provides a
description of how it can be used.

Summary

There is no single way to conduct an investigation, and I have given a brief overview of one
approach that I take. It has only three major phases and is based on a physical crime scene
investigation procedure. We have also looked at the major investigation types and a summary
of the available toolkits. In the next two chapters, we will look at the computer fundamentals
and how to acquire data during the Preservation Phase of an investigation.

Bibliography
Brenner, Susan, Brian Carrier, and Jef Henninger. "The Trojan Defense in Cybercrime
Cases." Santa Clara Computer and High Technology Law Journal, 21(1), 2004.

Bejtlich, Richard. The Tao of Network Security Monitoring: Beyond Intrusion Detection.
Boston: Addison Wesley, 2005.

Carrier, Brian. "Defining Digital Forensic Examination and Analysis Tools Using
Abstraction Layers." International Journal of Digital Evidence, Winter 2003a.
http://www.1jde.org.

Carrier, Brian. "Open Source Digital Forensic Tools: The Legal Argument." Fall 2003b.
http://www.digital-evidence.orgq.

Carrier, Brian, and Eugene H. Spafford. "Getting Physical with the Digital Investigation
Process." International Journal of Digital Evidence, Fall 2003. http://www.1ijde.org.

Casey, Eoghan. Digital Evidence and Computer Crime. 2nd ed. London: Academic Press,
2004.

Clifford, Ralph, ed. Cybercrime: The Investigation, Prosecution, and Defense of a Computer-
Related Crime. Durham: Carolina Academic Press, 2001.

George, Esther. "UK Computer Misuse Act—The Trojan Virus Defense." Journal of Digital
Investigation, 1(2), 2004.

The Honeynet Project. Know Your Enemy. 2nd ed. Boston: Addison-Wesley, 2004.

Houghton Mifflin Company. The American Heritage Dictionary. 4th ed. Boston: Houghton
Miftlin, 2000.

Mandia, Kevin, Chris Prosise, and Matt Pepe. Incident Response and Computer Forensics.
2nd ed. Emeryville: McGraw Hill/Osborne, 2003.

Schneier, Bruce. Applied Cryptography. 2nd ed. New York: Wiley Publishing, 1995.

21

Chapter 2. Computer Foundations

The goal of this chapter is to cover the low-level basics of how computers operate. In the
following chapters of this book, we examine, in detail, how data are stored, and this chapter
provides background information for those who do not have programming or operating
system design experience. This chapter starts with a discussion about data and how they are
organized on disk. We discuss binary versus hexadecimal values and little- and big-endian
ordering. Next, we examine the boot process and code required to start a computer. Lastly,
we examine hard disks and discuss their geometry, ATA commands, host protected areas, and
SCSL

Data Organization

The purpose of the devices we investigate is to process digital data, so we will cover some of
the basics of data in this section. We will look at binary and hexadecimal numbers, data sizes,
endian ordering, and data structures. These concepts are essential to how data are stored. If
you have done programming before, this should be a review.

Binary, Decimal, and Hexadecimal

First, let's look at number formats. Humans are used to working with decimal numbers, but
computers use binary, which means that there are only Os and 1s. Each 0 or 1 is called a bit,
and bits are organized into groups of 8 called bytes. Binary numbers are similar to decimal
numbers except that decimal numbers have 10 different symbols (0 to 9) instead of only 2.

Before we dive into binary, we need to consider what a decimal number is. A decimal
number is a series of symbols, and each symbol has a value. The symbol in the right-most
column has a value of 1, and the next column to the left has a value of 10. Each column has a
value that is 10 times as much as the previous column. For example, the second column from
the right has a value of 10, the third has 100, the fourth has 1,000, and so on. Consider the
decimal number 35,812. We can calculate the decimal value of this number by multiplying
the symbol in each column with the column's value and adding the products. We can see this
in Figure 2.1. The result is not surprising because we are converting a decimal number to its
decimal value. We will use this general process, though, to determine the decimal value of
non-decimal numbers.

Figure 2.1. The values of each symbol in a decimal number.

Decimal Number: 35,812

10,000 | 1,000 | 100 10
3 5 8 1 2

{3 x10,000) + (5x1,000) + (8x 100} + (1 x10) + (2 x 1) = 35,812

The right-most column is called the least significant symbol, and the left-most column is
called the most significant symbol. With the number 35,812, the 3 is the most significant
symbol, and the 2 is the least significant symbol.

Now let's look at binary numbers. A binary number has only two symbols (0 and 1), and each
column has a decimal value that is two times as much as the previous column. Therefore, the
right-most column has a decimal value of 1, the second column from the right has a decimal
value of 2, the third column's decimal value is 4, the fourth column's decimal value is 8, and
so on. To calculate the decimal value of a binary number, we simply add the value of each

22

column multiplied by the value in it. We can see this in Figure 2.2 for the binary number
1001 0011. We see that its decimal value is 147.

Figure 2.2. Converting a binary number to its decimal value.
Binary Number; 1001 0011

128 | 64 | 32 |16 | 8 | 4 | 2 | 1
i |l o lo]t o]l 0] 1]1

(T 128) +(0xB4) + (D x32)+ (1216 + {0 xB) +(0x)+ (T 2)+ (1 x1) =147

For reference, Table 2.1 shows the decimal value of the first 16 binary numbers. It also shows
the hexadecimal values, which we will examine next.

Table 2.1. Binary, decimal, and hexadecimal conversion table.

Binary Decimal Hexadecimal
0000 00 0
0001 01 1
0010 02 2
0011 03 3
0100 04 4
0101 05 5
0110 06 6
0111 07 7
1000 08 8
1001 09 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

Now let's look at a hexadecimal number, which has 16 symbols (the numbers 0 to 9 followed
by the letters A to F). Refer back to Table 2.1 to see the conversion between the base
hexadecimal symbols and decimal symbols. We care about hexadecimal numbers because it's
easy to convert between binary and hexadecimal, and they are frequently used when looking
at raw data. I will precede a hexadecimal number with '0x' to differentiate it from a decimal
number.

We rarely need to convert a hexadecimal number to its decimal value by hand, but I will go
through the process once. The decimal value of each column in a hexadecimal number
increases by a factor of 16. Therefore, the decimal value of the first column is 1, the second
column has a decimal value of 16, and the third column has a decimal value of 256. To
convert, we simply add the result from multiplying the column's value with the symbol in it.
Figure 2.3 shows the conversion of the hexadecimal number 0x8BE4 to a decimal number.

23

Figure 2.3. Converting a hexadecimal value to its decimal value.

Hexadecimal Number: Ox8BE4

Reference
OXB = 11 4,096 | 256 16 1
OxE = 14 B 11 14 4

(8 X 4,096) + (11 x 256) + (14 x 16) + (4 x 1) = 35,812

Lastly, let's convert between hexadecimal and binary. This is much easier because it requires
only lookups. If we have a hexadecimal number and want the binary value, we look up each
hexadecimal symbol in Table 2.1 and replace it with the equivalent 4 bits. Similarly, to
convert a binary value to a hexadecimal value, we organize the bits into groups of 4 and then
look up the equivalent hexadecimal symbol. That is all it takes. We can see this in Figure 2.4
where we convert a binary number to hexadecimal and the other way around.

Figure 2.4. Converting between binary and hexadecimal requires only lookups from Table 2.1.

1001 0011 to Hexadecimal 0x93 to Binary
Binary | ﬂlﬂ l E‘r | ﬂﬁ ff | Hexadecimal
Hexade{:imal[0x9 l 0x3 l | 1001 Uﬂﬁ | Binary

Sometimes, we want to know the maximum value that can be represented with a certain
number of columns. We do this by raising the number of symbols in each column by the
number of columns and subtract 1. We subtract 1 because we need to take the 0 value into
account. For example, with a binary number we raise 2 to the number of bits in the value and
subtract 1. Therefore, a 32-bit value has a maximum decimal value of

232 -1 =4,294,967,295

Fortunately, most computers and low-level editing tools have a calculator that converts
between binary, decimal, and hexadecimal, so you do not need to memorize these techniques.
In this book, the on-disk data are given in hexadecimal, and I will convert the important
values to decimal and provide both.

Data Sizes
To store digital data, we need to allocate a location on a storage device. You can think of this
like the paper forms where you need to enter each character in your name and address in little
boxes. The name and address fields have allocated space on the page for the characters in
your name. With digital data, bytes on a disk or in memory are allocated for the bytes in a
specific value.

A byte is the smallest amount of space that is typically allocated to data. A byte can hold only
256 values, so bytes are grouped together to store larger numbers. Typical sizes include 2, 4,
or 8 bytes. Computers differ in how they organize multiple-byte values. Some of them use
big-endian ordering and put the most significant byte of the number in the first storage byte,
and others use little-endian ordering and put the least significant byte of the number in the
first storage byte. Recall that the most significant byte is the byte with the most value (the

24

left-most byte), and the least significant byte is the byte with the least value (the right-most
byte).

Figure 2.5 shows a 4-byte value that is stored in both little and big endian ordering. The value
has been allocated a 4-byte slot that starts in byte 80 and ends in byte 83. When we examine
the disk and file system data in this book, we need to keep the endian ordering of the original
system in mind. Otherwise, we will calculate the incorrect value.

Figure 2.5. A 4-byte value stored in both big- and little-endian ordering.
Actual Value: 0x12345678

79 80 81 82 83 84

Big-endian | 00 | 12 | 34 | 56 | 78 | 00

79 80 81 82 83 84

Little-endian | oo | 78 | 56 | 34 | 12 | 00

[IA32-based systems (i.e., Intel Pentium) and their 64-bit counterparts use the little-endian
ordering, so we need to "rearrange" the bytes if we want the most significant byte to be the
left-most number. Sun SPARC and Motorola PowerPC (i.e., Apple computers) systems use
big-endian ordering.

Strings and Character Encoding

The previous section examined how a computer stores numbers, but we must now consider
how it stores letters and sentences. The most common technique is to encode the characters
using ASCII or Unicode. ASCII is simpler, so we will start there. ASCII assigns a numerical
value to the characters in American English. For example, the letter 'A'" is equal to 0x41, and
‘&' 1s equal to 0x26. The largest defined value is Ox7E, which means that 1 byte can be used
to store each character. There are many values that are defined as control characters and are
not printable, such the 0x07 bell sound. Table 2.2 shows the hexadecimal number to ASCII
character conversion table. A more detailed ASCII table can be found at
http://www.asciitable.com/.

Table 2.2. Hexadecimal to ASCII conversion table.
00 —NULL10-DLE 20-SPC30-040-@50-P 60-" 70—-p
01 —-SOH 11 -DC1 21 - 31-141-A51-Q61—-a 71—q
02-STX 12-DC222-" 32-242-B52-R62—-b 72—
03-ETX 13-DC323-# 33-343-C53-S63-c 73-5s
04—-EOT 14-DC424-% 34-444-D54-T64—-d 74—t
05-ENQ 15-NAK25-% 35-545-E 55-U65-¢e 75-u
06 —ACK 16 -SYN26-& 36-646-F 56-V66—-f 76—V
07-BEL 17-ETB 27 -' 37-747-G 57-W67—-qg 77 —w
08-BS 18- CAN28 —(38-848-H 58 -X68—-h 78—-x
09-TAB 19-EM 29-) 39-949-1 59-Y69—-i 79—y
OA-LF 1A-SUB2A-* 3A-;4A-J5A-Z6A-j 7TA-z
0B-BT 1B-ESC2B-+ 3B-;4B-K5B-[6B—k 7B—{

25

0C-FF 1C-FS 2C-, 3C-<4C-L5C-\6C—| 7C—|
OD-CR 1D-GS 2D-- 3D-=4D-M5D-] 6D-m7D—}
OE-SO 1E-RS 2E—-. B3E->4E-N5E-"6E—n 7E -~
OF-SI 1F-US 2F—/ 3F-?4F-O5F—_6F—o0 7F -

To store a sentence or a word using ASCII, we need to allocate as many bytes as there are
characters in the sentence or word. Each byte stores the value of a character. The endian
ordering of a system does not play a role in how the characters are stored because these are
separate 1-byte values. Therefore, the first character in the word or sentence is always in the
first allocated byte. The series of bytes in a word or sentence is called a string. Many times,
the string ends with the NULL symbol, which is 0x00. Figure 2.6 shows an example string
stored in ASCIIL. The string has 10 symbols in it and is NULL terminated so it has allocated
11 bytes starting at byte 64.

Figure 2.6. An address that is represented in ASCII starting at memory address 64.

String: 1 Main St.

64 65 66 67 68 69 70 71 72 73 74

31 |20 |4D | 61|69 | 6e | 20| 53|74 |2e |00
1 M a i n S t

ASCII is nice and simple if you use American English, but it is quite limited for the rest of
the world because their native symbols cannot be represented. Unicode helps solve this
problem by using more than 1 byte to store the numerical version of a symbol. (More
information can be found at www.unicode.org.) The version 4.0 Unicode standard supports
over 96,000 characters, which requires 4-bytes per character instead of the 1 byte that ASCII
requires.

There are three ways of storing a Unicode character. The first method, UTF-32, uses a 4-byte
value for each character, which might waste a lot of space. The second method, UTF-16,
stores the most heavily used characters in a 2-byte value and the lesser-used characters in a 4-
byte value. Therefore, on average this uses less space than UTF-32. The third method is
called UTF-8, and it uses 1, 2, or 4 bytes to store a character. Each character requires a
different number of bytes, and the most frequently used bytes use only 1 byte.

UTF-8 and UTF-16 use a variable number of bytes to store each character and, therefore,
make processing the data more difficult. UTF-8 is frequently used because it has the least
amount of wasted space and because ASCII is a subset of it. A UTF-8 string that has only the
characters in ASCII uses only 1 byte per character and has the same values as the equivalent
ASCII string.

Data Structures

Before we can look at how data are stored in specific file systems, we need to look at the
general concept of data organization. Let's return back to the previous example where we
compared digital data sizes to boxes on a paper form. With a paper form, a label precedes the
boxes and tells you that the boxes are for the name or address. Computers do not, generally,
precede file system data with a label. Instead, they simply know that the first 32 bytes are for
a person's name and the next 32 bytes are for the street name, for example.

Computers know the layout of the data because of data structures. A data structure describes
how data are laid out. It works like a template or map. The data structure is broken up into

26

fields, and each field has a size and name, although this information is not saved with the
data. For example, our data structure could define the first field to be called 'number' and
have a length of 2 bytes. It is used to store the house number in our address. Immediately
after the 'number' field is the 'street' field and with a length of 30 bytes. We can see this

layout in Table 2.3.
Table 2.3. A basic data structure for the house number and street name.
Byte Range Description
0-1 2-byte house number
2-31 30-byte ASCII street name

If we want to write data to a storage device, we refer to the appropriate data structure to
determine where each value should be written. For example, if we want to store the address 1
Main St., we would first break the address up into the number and name. We would write the
number 1 to bytes 0 to 1 of our storage space and then write "Main St." in bytes 2 to 9 by
determining what the ASCII values are for each character. The remaining bytes can be set to
0 since we do not need them. In this case, we allocated 32 bytes of storage space, and it can
be any where in the device. The byte offsets are relative to the start of the space we were
allocated. Keep in mind that the order of the bytes in the house number depends on the endian
ordering of the computer.

When we want to read data from the storage device, we determine where the data starts and
then refer to its data structure to find out where the needed values are. For example, let's read
the data we just wrote. We learn where it starts in the storage device and then apply our data
structure template. Here is the output of a tool that reads the raw data.

0000000: 0100 4d6l 696e 2053 742e 0000 0000 0000 ..Main St.......
0000016: 0000 0000 0000 0000 0000 0000 0000 0000
0000032: 1900 536f 7574 6820 5374 2e00 0000 0000 ..South St......
0000048: 0000 0000 0000 0000 0000 0000 0000 0000

The previous output is from the xxd Unix tool and is similar to a graphical hex-editor tool.
The left column is the byte offset of the row in decimal, the 8 middle columns are 16 bytes of
the data in hexadecimal, and the last column is the ASCII equivalent of the data. A '." exists
where there is no printable ASCII character for the value. Remember that each hexadecimal
symbol represents 4 bits, so a byte needs 2 hexadecimal symbols.

We look up the layout of our data structure and see that each address is 32 bytes, so the first
address is in bytes 0 to 31. Bytes O to 1 should be the 2 byte number field, and bytes 2 to 31
should be the street name. Bytes O to 1 show us the value 0x0100. The data are from an Intel
system, which is little-endian, and we will therefore have to switch the order of the 0x01 and
the 0x00 to produce 0x0001. When we convert this to decimal we get the number 1.

The second field in the data structure is in bytes 2 to 31 and is an ASCII string, which is not
effected by the endian ordering of the system, so we do not have to reorder the bytes. We can
either convert each byte to its ASCII equivalent or, in this case, cheat and look on the right
column to see "Main St.." This is the value we previously wrote. We see that another address
data structure starts in byte 32 and extends until byte 63. You can process it as an exercise (it
is for 25 South St).

Obviously, the data structures used by a file system will not be storing street addresses, but
they rely on the same basic concepts. For example, the first sector of the file system typically
contains a large data structure that has dozens of fields in it and we need to read it and know
that the size of the file system is given in bytes 32 to 35. Many file systems have several large
data structures that are used in multiple places.

27

Flag Values

There is one last data type that I want to discuss before we look at actual data structures, and
it is a flag. Some data are used to identify if something exists, which can be represented with
either a 1 or a 0. An example could be whether a partition is bootable or not. One method of
storing this information is to allocate a full byte for it and save the O or 1 value. This wastes a
lot of space, though, because only 1 bit is needed, yet 8 bits are allocated. A more efficient
method is to pack several of these binary conditions into one value. Each bit in the value
corresponds to a feature or option. These are frequently called flags because each bit flags
whether a condition is true. To read a flag value, we need to convert the number to binary and
then examine each bit. If the bit is 1, the flag is set.

Let's look at an example by making our previous street address data structure a little more
complex. The original data structure had a field for the house number and a field for the street
name. Now, we will add an optional 16-byte city name after the street field. Because the city
name is optional, we need a flag to identify if it exists or not. The flag is in byte 31 and bit 0
is set when the city exists (i.e., 0000 0001). When the city exists, the data structure is 48
bytes instead of 32. The new data structure is shown in Table 2.4.

Table 2.4. A data structure with a flag value.
Byte Range Description

0-1 2-byte house number

2-30 29-byte ASCII street name

31-31 Flags

32-47 16-byte ASCII city name (if flag is set)

Here is sample data that was written to disk using this data structure:

0000000: 0100 4dé6l 696e 2053 742e 0000 0000 0000 ..Main St.......
0000016: 0000 0000 0000 0000 0000 0000 0000 0061 a
0000032: 426f 7374 6f6e 0000 0000 0000 0000 0000 Boston..........
0000048: 1800 536f 7574 6820 5374 2e00 0000 0000 ..South St......
0000064: 0000 0000 0000 0000 0000 0000 0000 0060)

On the first line, we see the same data as the previous example. The address is 1 Main St, and
the flag value in byte 31 has a value of 0x61. The flag is only 1 byte in size, so we do not
have to worry about the endian ordering. We need to look at this value in binary, so we use
the lookup table previously given in Table 2.1 and convert the values 0x6 and Ox1 to the
binary value 0110 0001. We see that the least significant bit is set, which is the flag for the
city. The other bits are for other flag values, such as identifying this address as a business
address. Based on the flag, we know that bytes 32 to 47 contain the city name, which is
"Boston." The next data structure starts at byte 48, and its flag field is in byte 79. Its value is
0x60, and the city flag is not set. Therefore, the third data structure would start at byte 80.

We will see flag values through out file system data structures. They are used to show which
features are enabled, which permissions are in effect, and if the file system is in a clean state.

Booting Process

In the following chapters of this book, we are going to discuss where data reside on a disk
and which data are essential for the operation of the computer. Many times, I will refer to
boot code, which are machine instructions used by the computer when it is starting. This
section describes the boot process and where boot code can be found. Many disks reserve
space for boot code, but do not use it. This section will help you to identify which boot code
is being used.

28

Central Processing Units and Machine Code

The heart of a modern computer is one or more Central Processing Units (CPU). Example
CPUs are the Intel Pentium and Itanium, AMD Athlon, Motorola PowerPC, and Sun
UltraSPARC. CPUs by themselves are not very useful because they do only what they are
told. They are similar to a calculator. A calculator can do amazing things, but a human needs
to be sitting in front of it and entering numbers.

CPUs get their instructions from memory. CPU instructions are written in machine code,
which is difficult to read and not user-friendly. It is, in general, two levels below the C or Perl
programming languages that many people have seen. The level in between is an assembly
language, which is readable by humans but still not very user-friendly.

I will briefly describe machine code so that you know what you are looking at when you see
machine code on a disk. Each machine code instruction is several bytes long, and the first
couple of bytes identify the type of instruction, called the opcode. For example, the value 3
could be for an addition instruction. Following the opcode are the arguments to the
instruction. For example, the arguments for the addition instruction would be the two
numbers to add.

We do not really need much more detail than that for this book, but I will finish with a basic
example. One of the machine instructions is to move values into registers of the CPU.
Registers are places where CPUs store data. An assembly instruction to do this is MOV aH, 00
where the value 0 is moved into the AH register. The machine code equivalent is the
hexadecimal value 0xB400 where B4 is the opcode for mov an and 00 is the value, in
hexadecimal, to move in. There are tools that will translate the machine code to the assembly
code for you, but as you can see, it is not always obvious that you are looking at machine
code versus some other random data.

Boot Code Locations

We just discussed that the CPU is the heart of the computer and needs to be fed instructions.
Therefore, to start a computer, we need to have a device that feeds the CPU instructions, also
known as boot code. In most systems, this is a two-step process where the first step involves
getting all the hardware up and running, and the second step involves getting the OS or other
software up and running. We will briefly look into boot code because all volume and file
systems have a specific location where boot code is stored, and it is not always needed.

When power is applied to a CPU, it knows to read instructions from a specific location in
memory, which is typically Read Only Memory (ROM). The instructions in ROM force the
system to probe for and configure hardware. After the hardware is configured, the CPU
searches for a device that may contain additional boot code. If it finds such a device, its boot
code is executed, and the code attempts to locate and load a specific operating system. The
process after the bootable disk is found is platform-specific, and I will cover it in more detail
in the following chapters.

As an example, though, we will take a brief look at the boot process of a Microsoft Windows
system. When the system is powered on, the CPU reads instructions from the Basic Input /
Output System (BIOS), and it searches for the hard disks, CD drives, and other hardware
devices that it has been configured to support. After the hardware has been located, the BIOS
examines the floppy disks, hard disks, and CDs in some configured order and looks at the
first sector for boot code. The code in the first sector of a bootable disk causes the CPU to
process the partition table and locate the bootable partition where the Windows operating
system is located. In the first sector of the partition is more boot code, which locates and
loads the actual operating system. We can see how the various components refer to each other
in Figure 2.7.

29

Figure 2.7. The relationship among the various boot code locations in an IA32 system.

1)

BIOS
Instructions

! CPU

l

|

Y
2] Disk 3} Partition
SectorQ F---------- > Sector 0
Instructions Instructions

4} Windows
Operating
System

In the Windows example, if the boot code on the disk were missing, the BIOS would not find
a bootable device and generate an error. If the boot code on the disk could not find boot code
in one of the partitions, it would generate an error. We will examine each of these boot code
locations in the following chapters.

Hard Disk Technology

If a digital investigator can learn about only one piece of hardware in a computer, hard disks
are probably his best choice because they are one of the most common sources of digital
evidence. This section covers hard disks basics and discusses topics that are of interest to an
investigator, such as access methods, write blocking, and locations where data can be hidden.
The first section is an overview of how a disk works, and the next two sections cover AT
Attachment (ATA/IDE) disks and Small Computer Systems Interface (SCSI) disks,
respectively.

Hard Disk Geometry and Internals

Let's start with the internals of all modern hard disks. This information is useful for a basic
understanding of how data are stored and because older file systems and partitioning schemes
use disk geometry and other internal values that are hidden with modern disks. Therefore,
knowing about disk geometry will help you to understand some of the values in a file system.
The goal of this section is not to enable you to fix hard disks. Instead, the goal is to obtain a
conceptual understanding of what is going on inside.

Hard disks contain one or more circular platters that are stacked on top of each other and spin
at the same time. A picture of the inside of a disk can be found in Figure 2.8. The bottom and
top of each platter is coated with a magnetic media, and when the disk is manufactured, the
platters are uniform and empty.

30

Figure 2.8. The inside of an ATA disk where we see the platters on the right and an arm on the
left that reads from and writes to the platters.

Inside the disk is an arm that moves back and forth, and it has a head on the top and bottom
of each platter that can read and write data, although only one head can read or write at a
time.

A low-level format is performed on the blank platters to create data structures for tracks and
sectors. A track is a circular ring that goes around the platter. It is similar to a lane on a
running track so that if you go around the entire circle, you will end in the same location that
you started. Each track on the hard disk is given an address from the outside inward, starting
with 0. For example, if there were 10,000 tracks on each platter, the outside track of each
platter would be 0, and the inside track (nearest the center of the circle) would be 9,999.
Because the layout of each platter is the same and the tracks on each platter are given the
same address, the term cylinder is used to describe all tracks at a given address on all platters.
For example, cylinder O is track O on the bottom and top of all platters in the hard disk. The
heads in the disk are given an address so that we can uniquely identify which platter and on
which side of the platter we want to read from or write to.

Each track is divided into sectors, which is the smallest addressable storage unit in the hard
disk and is typically 512 bytes. Each sector is given an address, starting at 1 for each track.
Therefore, we can address a specific sector by using the cylinder address (C) to get the track,
the head number (H) to get the platter and side, and the sector address (S) to get the sector in
the track. We can see this in Figure 2.9.

31

Figure 2.9. Disk geometry of one platter showing the track (or cylinder) and sector addresses
(not even close to scale).
Track #1

Sector #3

Track #0

We will discuss in the "Types of Sector Addresses" section that the CHS address is no longer
used as the primary addressing method. The Logical Block Address (LBA) is instead used,
and it assigns sequential addresses to each sector. The LBA address may not be related to its
physical location.

A sector can become defective and should therefore no longer be used to store user data.
With older disks, it was the responsibility of the operating system to know where the bad
sectors were and to not allocate them for files. Users could also manually tell the disk which
sectors to ignore because they were bad. In fact, many file systems still provide the option to
mark sectors as bad. This is typically not needed, though, because modern disks can identify
a bad sector and remap the address to a good location somewhere else on the disk. The user
never knows that this has happened.

The previous description of the layout is overly simplified. In reality, the disk arranges the
location of the sectors to obtain the best performance. So, sectors and tracks may be offset to
take advantage of the seek times and speeds of the drive. For the needs of many investigators,
this simplistic view is good enough because most of us do not have clean rooms, and the
equipment to locate where a specific sector is located on a platter. A more detailed discussion
of drive internals can be found in Forensic Computing [Sammes and Jenkinson 2000].

ATA / IDE Interface

The AT Attachment (ATA) interface is the most popular hard disk interface. Disks that use
this interface are frequently referred to as IDE disks, but IDE simply stands for Integrated
Disk Electronics and identifies a hard disk that has the logic board built into it, which older
disks did not. The actual interface that the "IDE" disks use is ATA. This section goes into
some of the relevant details of the ATA specification so that we can discuss technologies,
such as hardware write blockers and host protected areas.

32

The ATA specifications are developed by the TI3 Technical Committee
(http://www.t13.0rg), which is a committee for the International Committee on
Information Technology Standards (INCITS). The final version of each specification is
available for a fee, but draft versions are freely available on the INCITS Web site. For the
purposes of learning about hard disks, the draft versions are sufficient.

ATA disks require a controller, which is built into the motherboard of modern systems. The
controller issues commands to one or two ATA disks using a ribbon cable. The cable has
maximum length of 18 inches and has 40 pins, but newer disks have an extra 40 wires that
are not connected to any pins. The interface can be seen in Figure 2.10. The extra wires are
there to prevent interference between the wires. Laptops frequently have a smaller disk and
use a 44-pin interface, which includes pins for power. Adaptors can be used to convert
between the two interfaces, as can be seen in Figure 2.11. There is also a 44-pin high-density
interface that is used in portable devices, such as Apple iPods.

Figure 2.10. An ATA disk with the 40-pin connector, jumpers, and power connector.

Figure 2.11. A 44-pin ATA laptop drive connected to a 40-pin ATA ribbon cable using an
adaptor (Photo courtesy of Eoghan Casey).

S—]

.

The interface data path between the controller and disks is called a channel. Each channel can
have two disks, and the terms "master" and "slave" were given to them, even though neither
has control over the other. ATA disks can be configured as master or slave using a physical
jumper on the disk. Some also can be configured to use "Cable Select," where they will be
assigned as master or slave based on which plug they have on the ribbon cable. Most
consumer computers have two channels and can support four ATA disks.

Types of Sector Addresses

To read or write data from the disk, we need to be able to address the sectors. As we will see
later in the book, a single sector will be assigned a new address each time a partition, file
system, or file uses it. The address that we are referring to in this section is its physical

33

address. The physical address of a sector is its address relative to the start of the physical
media.

There are two different physical addressing methods. Older hard disks used the disk geometry
and the CHS method, which we already discussed. Refer to Figure 2.9 for a simplistic
example of how the cylinder and head addresses are organized.

The CHS addressing scheme sounds good, but it has proven to be too limiting and is not used
much anymore. The original ATA specification used a 16-bit cylinder value, a 4-bit head
value, and an 8-bit sector value, but the older BIOSs used a 10-bit cylinder value, 8-bit head
value, and a 6-bit sector value. Therefore, to communicate with the hard disk through the
BIOS, the smallest size for each value had to be used, which allowed only a 504MB disk.

To work around the 504MB limit, new BIOSes were developed that would translate the
address ranges that they liked to the addresses that the ATA specification liked. For example,
if the application requested data from cylinder 8, head 4, and sector 32, the BIOS might
translate that and request cylinder 26, head 2, sector 32 from the disk. For translation to work,
the BIOS will report a hard disk geometry that is different from what actually existed on the
disk. The translation process does not work for disks that are larger than 8.1GB.

BIOSes that perform address translation are not as common anymore, but an investigator may
run into difficulties if he encounters such a system. If he pulls the disk out of the system and
puts it into one of his systems, the translation might not exist or might be different, and an
acquisition or dead analysis cannot be performed because the wrong sectors will be returned.
To solve this problem, an investigator needs to use the original system or find a similar
system that performs the same translation. An investigator can determine if a system is doing
translation by looking up the BIOS version on the vendors website or by looking for
references in the BIOS.

To overcome the 8.1GB limit associated with translation, the CHS addresses were
abandoned, and Logical Block Addresses (LBA) became standard. LBA uses a single
number, starting at 0, to address each sector and has been supported since the first formal
ATA specification. With LBA, the software does not need to know anything about the
geometry; it needs to know only a single number. Support for CHS addresses was removed
from the ATA specification in ATA-6.

Unfortunately, some of the file system and other data structures still use CHS addresses, so
we need to be able to convertfrom CHS to LBA throughout this book. LBA address 0 is CHS
address 0,0,1 and LBA 1 is CHS address 0,0,2. When all the sectors in the track have been
used, the first sector at the next head in the same cylinder is used, which is CHS address
0,1,1. You can visualize this as filling the outer ring of the bottom platter, then moving up
platters until the top platter is reached. Then, the second ring on the bottom platter is used.
The conversion algorithm is

LBA = (((CYLINDER * heads_per_ cylinder) + HEAD) * sectors_per_track) + SECTOR -

where you replace CYLINDER, HEAD, and SECTOR with the respective CHS address
values. For example, consider a disk that reported 16 heads per cylinder and 63 sectors per
track. If we had a CHS address of cylinder 2, head 3, and sector 4, its conversion to LBA
would be as follows:

2208 = (((2 * 16) + 3) * 63) + 4 - 1

Interface Standards

There are a lot of interface terms in the consumer hard disk arena, which can be confusing.
Some of the terms mean the same thing, where a standards committee chose one, and a hard
disk company chose another. A description of the unofficial terms, such as "Enhanced IDE"
and "Ultra ATA," can be found in the PC Guide's "Unofficial IDE/ATA Standards and

34

Marketing Programs" (http://www.pcguide.com/ref/hdd/if/ide/unstd.htm). In
general, each new standard adds a faster method of reading and writing data or fixes a size
limitation of a previous standard.

Note that ATA specifications are applicable to only hard disks. Removable media, such as
CD-ROMs and ZIP disks, need to use a special specification, called AT Attachment Packet
Interface (ATAPI). ATAPI devices typically use the same cables and controller, but they
require special drivers.

Here are some of the highlights of the specifications that are of interest to an investigation:

e ATA-I1: Originally published in 1994. This specification had support for CHS and 28-
bit LBA addresses [T13 1994].

e ATA-3: This specification was published in 1997 and added reliability and security
features.Self-Monitoring Analysis and Reporting Technology (SMART) was
introduced, which attempts to improve reliability by monitoring several parts of the
disk. Passwords were also introduced in this specification [T13 1997].

e ATA / ATAPI-4: ATAPI, the specification for removable media, was integrated into
the ATA specification in ATA-4, which was published in 1998. The 80-wire cable
was introduced to help decrease interference. ATA-4 added the HPA, which will be
discussed later [T13 1998].

e ATA / ATAPI-6: This specification was published in 2002, added 48-bit LBA
addresses, removed support for CHS addresses, and added the DCO [T13 2002].

e ATA / ATAPI-7: This specification is still in draft form at the time of this writing.
The drafts include serial ATA, which will be discussed later.

Disk Commands

This section provides an overview of how the controller and hard disk communicate, which
will help when we discuss hardware write protectors and the host protected area. This section
does not apply to ATAPI devices, such as CD-ROMs.

The controller issues commands to the hard disk over the ribbon cable. The commands are
issued to both disks on the cable, but part of the command identifies if it is for the master or
slave. The controller communicates with the hard disk by writing to its registers, which are
small pieces of memory. The registers work like an online order form where the controller
writes data into specific registers like you would write data into specific fields of the form.
When all the necessary data has been written to the registers, the controller writes to the
command register, and the hard disk processes the command. This is like hitting the submit
button of an HTML form. In theory, the disk should not do anything until the command
register is written to.

For example, consider a case where the controller wants to read a sector of the disk. It would
need to write the sector address and number of sectors to read in the appropriate registers.
After the command details have been written to the registers, the controller would instruct the
hard disk to perform the read action by writing to the command register.

Hard Disk Passwords

The ATA-3 specification introduced new optional security features, including passwords that
can be set through the BIOS or various software applications. If implemented, there are two
passwords in hard disks, the user and the master passwords. The master password was
designed so that a company administrator could gain access to the computer in case the user
password was lost. If passwords are being used, there are two modes that the disk can operate
in: high and maximum. In the high security mode, the user and master password can unlock
the disk. In maximum-security mode, the user password can unlock the disk but the master
password can unlock the disk only after the disk contents have been wiped. After a certain

35

number of failed password attempts, the disk will freeze, and the system will need to be
rebooted.

The hard disk will require the SECURITY_UNLOCK command to be executed with the
correct password before many of the other ATA commands can be executed. After the correct
password has been entered, the disk works normally until the disk is powered down.

Some ATA commands are still enabled on the hard disk when it is locked, so it may show up
as a valid disk when inserted into a computer. However, when you try to read actual user data
from a locked disk, it will either produce an error or require a password. There are several
free programs on the Internet that will tell you if the disk is locked and will allow you to
unlock it with the password. Two such programs are atapwd and hdunlock!"!. The password
can be set through the BIOS or through various software applications. Some data-recovery
companies may be able to bypass the password by opening the disk.

Host Protected Area

The Host Protected Area (HPA) is a special area of the disk that can be used to save data, and
a casual observer might not see it. The size of this area is configurable using ATA
commands, and many disks have a size of 0 by default.

The HPA was added in ATA-4, and the motivation was for a location where computer
vendors could store data that would not be erased when a user formats and erases the hard
disk contents. The HPA is at the end of the disk and, when used, can only be accessed by
reconfiguring the hard disk.

Let's go over the process in more detail using the ATA commands. Some of the commands I
will use have two versions depending on the size of the disk, but we will use only one of
them. There are two commands that return maximum addressable sectors values, and if a
HPA exists their return values will be different. The READ_NATIVE_MAX_ADDRESS
command will return the maximum physical address, but the IDENTIFY_DEVICE command
will return only the number of sectors that a user can access. Therefore, if an HPA exists, the
READ_NATIVE MAX_ ADDRESS will return the actual end of the disk and the
IDENTIFY_DEVICE command will return the end of the user area (and the start of the
HPA). Note that the next section will show that the READ_NATIVE_MAX_ADDRESS is
not always the last physical address of the disk.

To create an HPA, the SET_MAX_ADDRESS command is used to set the maximum address
to which the user should have access. To remove an HPA, the SET MAX_ ADDRESS
command must be executed again with the actual maximum size of the disk, which can be
found from READ_NATIVE_MAX_ADDRESS.

For example, if the disk is 20GB, READ_NATIVE_MAX_ADDRESS will return a sector
count of 20GB (41,943,040 for example). To create a 1GB host protected area, we execute
SET_MAX_ADDRESS with an address of 39,845,888. Any attempt to read from or write to
the final 2,097,152 sectors (1GB) will generate an error, and the IDENTIFY_DEVICE
command will return a maximum address of 39,845,888. We can see this in Figure 2.12. To
remove the HPA, we would execute SET_MAX_ ADDRESS with the full sector count.

! These programs are most commonly found on Web sites that document how to modify video game consoles.
Anexample is http://www.xbox—-scene.com/tools/tools.php?page=harddrive.

36

Figure 2.12. A 1GB Host Protected Area (HPA) in a 20GB disk.
] 19 20
GB GB GB

User Addressable Sectors HPA
T A

READ NATIVE MAX ADDRESS

IDENTIFY_DEVICE

One of the settings for the SET_MAX_ADDRESS command is a 'volatility bit' that, when
set, causes the HPA to exist after the hard disk is reset or power cycled. There is also a set of
locking commands in the ATA specification that prevents modifications to the maximum
address until the next reset. This allows the BIOS to read or write some data in the host
protected area when the system is powering up, set the host protected area so that the user
cannot see the data, and then lock the area so that it cannot be changed. A password can even
be used (which is a different password than is used for accessing the disk).

In summary, a hard disk may have an HPA containing system files, hidden information, or
maybe both. It can be detected by comparing the output of two ATA commands. To remove
it, the maximum address of the hard disk must be reset, but the volatility setting allows the
change to be temporary.

Device Configuration Overlay

In addition to data being hidden in an HPA, data can be hidden using Device Configuration
Overlay (DCO). DCO was added to ATA-6 and allows the apparent capabilities of a hard
disk to be limited. Each ATA specification has optional features that a disk may or may not
implement. The computer uses the IDENTIFY_DEVICE command to determine which
features a hard disk supports. A DCO can cause the IDENTIFY_DEVICE command to show
that supported features are not supported and show a smaller disk size than actually exists.

Let's look at some of the DCO commands. The DEVICE_CONFIGURATION_IDENTIFY
command returns the actual features and size of a disk. Therefore, we can detect a DCO by
comparing the outputs of DEVICE_CONFIGURATION_IDENTIFY and
IDENTIFY_DEVICE. Further, recall that the READ_NATIVE_MAX_ADDRESS command
returns the size of the disk after an HPA. We can detect a DCO that hides sectors by
comparing the READ_NATIVE_MAX_ADDRESS output with
DEVICE_CONFIGURATION_IDENTIFY.

For example, consider a 20GB disk where a DCO has set the maximum address to 19GB. The
READ_NATIVE_MAX_ADDRESS and IDENTIFY_DEVICE show that the disk is only
19GB. If a 1GB HPA is also created, the IDENTIFY_DEVICE command shows that the size
of the disk is 18GB. We can see this in Figure 2.13.

37

Figure 2.13. A DCO can hide sectors at the end of the disk, in addition to sectors hidden by an
HPA.

0 18 19 20
GB GB GB GB

User Addressable Sectors HFA | DCO
T A A

READ_NATIVE_MAX_ADDRESS

IDENTIFY_DEVICE

DEVICE_CONFIGURATION_IDENTIFY

To create or change a DCO, the DEVICE_CONFIGURATION_SET command is used. To
remove a DCO, the DEVICE_CONFIGURATION_RESET command is used. Unlike HPA,
there is no volatile option that allows the device to change the settings for that one session.
All DCO changes are permanent across resets and power cycles.

Serial ATA

Working with ATA devices has its drawbacks. The cables are big, not flexible, and have the
connectors in places that are frequently not where you want them. The hard disks also can be
difficult to configure with master and slave jumpers. The cable and speed of the interface
were some of the motivations behind the development of Serial ATA, which is included in
the ATA-7 specification.

The interface is called serial because only one bit of information is transmitted between the
controller and the disk at a time, as compared to 16 bits at a time with the original interface,
or parallel ATA. The serial ATA connectors are about one-fourth the size of the paralle]l ATA
connectors and they have only seven contacts. Each serial ATA device is connected directly
to the controller, and there is no chaining of multiple devices.

Serial ATA has been designed so that a new controller can be placed in a computer, and the
computer does not know the difference between the original ATA (parallel ATA) and the
new serial ATA. In fact, the serial ATA controller has registers that make the computer think
that it is talking to a parallel ATA disk. The host computer sees each disk that is connected to
the serial ATA controller as the master disk on its own channel.

BIOS versus Direct Access

Now that we know how the ATA hard drives work and how they are controlled, we need to
discuss how software interfaces with them because this can cause problems when acquiring
the contents of a disk. There are two methods that software can use to access the disk:
directly through the hard disk controller or through the BIOS.

Direct Access to Controller

We saw in a previous section that the hard disk is connected to a hard disk controller, which
issues commands to the hard disk using the ribbon cable. One technique for reading and
writing data is for software to communicate directly with the hard disk controller, which then
communicates with the hard disk.

To communicate this way, the software needs to know how to address the controller and how
to issue commands to it. For example, the software needs to know what the command code
for the read operation is, and it needs to know how to identify which sectors to read. The
software also will have to be able to query the hard disk for details such as type and size.

38

BIOS Access to Controller

Accessing the hard disk directly is the fastest way to get data to and from the disk, but it
requires the software to know quite a bit about the hardware. One of the jobs of the BIOS is
to prevent software from having to know those details. The BIOS knows about the hardware,
and it provides services to the software so that they can more easily communicate with
hardware.

Recall from the "Boot Code Locations" section that the BIOS is used when the computer
starts. The BIOS performs many tasks during the boot process, but there are two that we are
interested in for this discussion. The first relevant task is that it determines the details of the
currently installed disks. The second relevant task is that it loads the interrupt table, which
will be used to provide services to the operating system and software.

To use the BIOS hard disk services, the software must load data, such as the sector address
and sizes, into the CPU registers and execute the software interrupt command 0x13
(commonly called INT13h). The software interrupt command causes the processor to look at
the interrupt table and locate the code that will process the service request. Typically, the
table entry for interrupt Ox13 contains the address of the BIOS code that will use its
knowledge of the hard disk to communicate with the controller. In essence, the BIOS works
as a middleman between the software and the hard disk.

INT13h is actually a category of disk functions and includes functions that write to the disk,
read from the disk, format tracks on the disk, and query the disk for information. The original
INT13h functions for reading and writing used CHS addresses and allowed the software to
access a disk that was only 8.1GB or less. To overcome this limitation, new functions were
added to INT13h in the BIOS, called the "extended INT13h."

The extended INT13h functions required new BIOS code and used a 64-bit LBA address. For
backward compatibility reasons, the old CHS functions remained, and software had to be
rewritten to take advantage of the new LBA INT13h functions.

SCSI Drives

When building a portable incident response kit, some of the more difficult decisions may
include identifying what types of Small Computer Systems Interface (SCSI) cables, drives,
and connectors should be included. This section gives an overview of SCSI, focuses on the
different types, and describes how it is different from ATA. SCSI hard disks are not as
common as ATA hard disks for consumer PCs, but they are standard on most servers.

Like ATA, there are many specifications of SCSI, which are published by the T10 Technical
Committee for INCITS (http://www.t10.0rg). There are three SCSI specifications, SCSI-1,
SCSI-2, and SCSI-3. SCSI-3 actually includes many smaller specifications, but covering all
the details is out of the scope for this book.

SCSI versus ATA

There are both high-level and low-level differences between SCSI and ATA. The most
obvious high-level difference includes the numerous connector types. With ATA, there was
only 40- and 44-pin connectors, but SCSI has many shapes and styles. The SCSI cables can
be much longer than ATA cables and there can be more than two devices on the same cable.
Each device on the SCSI cable needs a unique numerical ID, which can be configured with
jumpers on the disk or with software. Many SCSI disks also have a jumper to make the disk
read only, which provides a similar function to an ATA write blocker. ATA write blockers
are external devices that block write commands, and they will be discussed in Chapter 3,
"Hard Disk Data Acquisition."

The first low-level difference between ATA and SCSI is that SCSI does not have a controller.
The ATA interface was designed for a single controller to tell one or two hard disks what to

39

do. SCSI was designed as a bus where different devices communicate with each other and the
devices are not limited to hard disks. With a SCSI configuration, the card that plugs into the
computer is not a controller because each device on the SCSI cable is essentially an equal and
can make requests of each other.

Like ATA, standard SCSI is parallel and data transfers occur in 8-bit or 16-bit chunks. Also
like ATA, there is a serial version of the specification, which is the serial attached SCSI
specification.

Types of SCSI

The differences in SCSI versions boil down to how many bits are transferred at a time, the
frequency of the signals on the cable (the speed of the transfer), and what types of signals are
used. Older types of SCSI had a normal version and a wide version, where the normal version
transferred 8 bits at a time and the wide version transferred 16-bits at a time. For example, an
Ultra SCSI device performs an 8-bit transfer and a Wide Ultra SCSI device performs a 16-bit
transfer. All newer systems use 16-bit transfers, and there is no need to differentiate between
normal and wide.

The second difference in SCSI versions is the speed of the signals in the cable. Table 2.5
shows the names of the SCSI types, the speed, and the transfer rates for an 8-bit normal bus
and a 16-bit wide bus.

Table 2.5. Speed differences among the different types of SCSI.

Type Frequency 8-bit Transfer Rate 16-bit (wide) Transfer Rate
SCSI (normal) 5 MHz 5MB/s 10MB/s
Fast SCSI 10 MHz 10MB/s 20MB/s
Ultra SCSI 20 MHz 20MB/s 40MB/s
Ultra2 SCSI 40 MHz 40MB/s 80MB/s
Ultra3 SCSI 80 MHz N/A 160MB/s
Ultra160 SCSI 80 MHz N/A 160MB/s
Ultra320 SCSI 160 MHz N/A 320MB/s

Within each of these types, there are different ways that the data are represented on the wire.
The obvious method is single ended (SE), where a high voltage is placed on the wire if a 1 is
being transmitted and no voltage is placed on the wire if a O is transmitted. This method runs
into problems at higher speeds and with longer cables because the electric signal cannot
stabilize at the high clock rate and the wires cause interference with each other.

The second method of transmitting the data is called differential voltage, and each bit actually
requires two wires. If a O is being transmitted, no voltage is applied to both wires. If a 1 is
being transmitted, a positive voltage is applied to one wire and the opposite voltage is applied
to the second wire. When a device reads the signals from the cable, it takes the difference
between the two wires. A high voltage differential (HVD) signal option has existed in SCSI
since the first version and a low voltage differential (LVD) signal option uses a smaller
signal, has existed since Ultra2 SCSI, and is the primary signal type for new disks. Table 2.6
shows the types of SCSI that use the different signal types.

Table 2.6. Signal types that can found in each type of SCSI.
Signal Type SCSI Types

SE SCSI, Fast SCSI, Ultra SCSI
HVD SCSI, Fast SCSI, Ultra SCSI, Ultra2 SCSI
LVD Ultra2 SCSI, Ultra3 SCSI, Ultra160 SCSI, Ultra 320 SCSI

40

It is very important that you do not mix different signal types. You can cause damage to your
devices when you connect SE devices to HVD and some LVD devices. Some of the LVD
disks are SE compatible, so they can be used in an SE environment without damage, but they
will only operate at the speeds that the SE devices use. There are symbols on the SCSI
devices that identify what signal type they use. Ensure that all devices have the same symbol
or compatible ones. The symbols are shown in Figure 2.14.

Figure 2.14. Symbols for SCSI signal types. (A) is for SE devices, (B) is for LVD devices, (C) is
for devices that are both SE and LVD compatible, and (D) is for HVD devices.

A) B)

C) D)
SCsi SE SCS<>LUD EG&CUFD!SE SGSICDF F

Connector Types

There are many types of SCSI connectors, but there are only a few that are frequently
encountered. In general, drives that have an 8-bit bus have a 50-pin cable, and those that have
a 16-bit bus have a 68-pin cable. The high-density 68-pin adaptor is currently one of the most
common, and it comes in a normal size and a very high-density size, but the normal is most
common and can be seen in Figure 2.15. The 68-pin adaptor is used for both LVD and SE
signals, but the physical cable for the different signal types is different. Check the writing on
the cable to prevent problems.

Figure 2.15. A SCSI disk with a 68-pin connector.

A variation of the high-density 68-pin connector is the Single Connector Attachment (SCA)
connector. The purpose of this connector is to provide power and the data wires in one
connector, which makes it easier to swap drives in a server. This connector has 80 pins and
includes pins for power and to configure the disk. A picture of one can be found in Figure
2.16.

gure 2.16. A SCSI disk with an SCA connector.

There are many adaptors for the different SCSI connectors, and the SCSI devices are
supposed to be backward compatible. However, not all adaptor and device configurations
may work. If the setup does work, it will run at the speed of the slowest device. Remember to

41

not mix any HVD devices with LVD or SE devices without the appropriate adaptors and to
only mix LVD and SE devices if the LVD devices can run in SE mode.

Size Barriers

SCSI disks do not suffer from the same size limitations as ATA disks do because the SCSI
specification has always used 32-bit and 64-bit LBA addresses. Although, the size limitations
of the BIOS (if you are using INT13h) or file system may be smaller that what SCSI
supports, and they will be the limiting factor.

When used through the BIOS, the SCSI controller translates a CHS address to an LBA
address. Different controllers can use different mapping techniques, but many of them choose
one based on the geometry described by the entries in a partition table. It could be possible
for an investigator to have a controller in his acquisition system that does not conduct the

same mapping as the original controller, so the disk needs to be acquired using direct access
and not the BIOS.

Summary

In this chapter, we have discussed the basics of data organization and storage. These are
important concepts for this book because we will be looking at the data structures and storage
methods that the various file systems use. Additional information about data structures can be
found in C programming books. We also looked at hard disk technology, which is also
important because it is where most of the evidence is found. Additional information about
hard disk technology can be found in the PC Guide (http://www.pcguide.com/
ref/hdd/index.htm) or in the official ATA or SCSI specifications.

Bibliography
Sammes, Tony, and Brian Jenkinson. Forensic Computing: A Practitioner's Guide. New
York: Springer-Verlag, 2000.

T13. "Information Technology—AT Attachment Interface for Disk Drives." X3T10, 791D
Revision 4c, 1994. nttp://www.t13.0rg/project/d0791r4dc—ATA-1.pdf.

T13. "Information Technology—AT Attachment with Packet Interface—6 (ATA/ATAPI-6)."
1410D Revision 3b, February 26, 2002. http://www.t13.0rg/docs2002/d1410r3b.pdf.

T13. "Information Technology—AT Attachment with Packet Interface Extension
(ATA/ATAPI-4)." 1153D Revision 18, August 19, 1998.
http://www.tl3.0org/project/d1153r18-ATA-ATAPI-4.pdf.

T13. "Information Technology—AT Attachment-3 Interface (ATA-3)." X3T13, 2008D
Revision 7b, January 27, 1997. http://www.t13.0rg/project /d2008r7b—ATA-3.pdf.

42

Chapter 3. Hard Disk Data Acquisition

The bulk of this book deals with the analysis of data found on a storage device, namely a hard
disk. Data can be analyzed on a live system, but it is more common to acquire a copy of the
data for a dead analysis. Acquisition typically occurs during the System Preservation phase of
an investigation and is one of the most important phases in a digital forensic investigation
because if data are not collected from the system, they could be lost and therefore not
recognized as evidence. Further, if data are not collected properly, their value as legal
evidence is diminished. This chapter shows the theory of how hard disk data can be acquired
and includes a case study using the Linux dd tool.

Introduction

We saw in Chapter 1, "Digital Investigation Foundations," that the first phase of a digital
investigation is the preservation of the digital crime scene. A technique that is commonly
used in the preservation of a system is to make duplicate copies of the hard disks so that they
can be brought to a lab for a dead analysis. We can think of this phase the way we would
think of the process of making an exact replica of a building where a physical crime occurred
so that investigators can search it for evidence in a lab.

General Acquisition Procedure

The general, and intuitive, procedure for acquiring a storage device is to copy one byte from
the original storage device (the source) to a destination storage device and repeat the process.
This is analogous to copying a document by hand and reading a letter, punctuation mark, or
space from the original and writing it to the duplicate. While this works, most of us do not
copy documents this way because we can remember entire words, and it is more efficient to
transfer one or more words at a time. Computers do the same thing and copy data from the
suspect systems in chunks of data, ranging from 512 bytes to many thousands of bytes.

The chunks of data that are transferred each time are typically a multiple of 512 bytes,
because that is the size of most disk sectors. If the acquisition tool encounters an error while
reading data from the suspect drive, many of the tools will write zeros to the destination.

Data Acquisition Layers

The general theory of non-volatile data acquisition is to save every byte that we think may
contain evidence. We saw in Chapter 1 that data can be interpreted at different layers; for
example, the disk, volume, file, and application layers. At each layer of abstraction, data are
lost. Therefore, the rule of thumb is to acquire data at the lowest layer that we think there will
be evidence. For most cases, an investigator will acquire every sector of a disk, which is what
we cover in this chapter. Note that when we save only the contents of each sector, we lose
data that data recovery specialists may need.

To show why we typically acquire at the disk level, we will consider some scenarios.
Suppose that we acquired a disk at the volume level and we made a copy of every sector in
each partition. This would allow us to recover deleted files in each partition, but we would
not be able to analyze the sectors that are not allocated to partitions. As we will see in
Chapter 5, "PC-based Partitions," a disk that has DOS partitions may not use sectors 1 to 62,
and they could contain hidden data. If we acquired at the volume level, the hidden data would
be lost.

Suppose that we used a backup utility and copied only allocated files. In this case, we would
not be able to recover deleted files, we might not have access to all the temporal data, and we
would not be able to find data that has been hidden inside partition or file system data
structures. Sometimes a backup is the only available data, and the investigator needs to make

43

the most of it. A scenario where a backup would be critical is in a corporate environment
where a server is not responding because its disks were wiped with Os and then rebooted. The
last backups of the system might provide clues about who had access to the system and
whether an attacker had compromised it.

For some systems, our rule of thumb about acquiring at the level where we think there will be
evidence means that we need to copy only files. Consider an intrusion investigation where
there is an Intrusion Detection System (IDS) that contains log entries corresponding to the
attack. If we do not think that the IDS was compromised, the only evidence on the system is
at the file level, and we can simply copy the necessary logs and take the appropriate
preservation steps. If we think that the IDS was compromised, we should acquire it at the disk
level so that we can analyze all the data.

Acquisition Tool Testing

Acquisition is a crucial part of the investigation process, and the National Institute of
Standards and Technology (NIST) has conducted tests on common acquisition tools. The
Computer Forensic Tool Testing (CFTT) project at NIST developed requirements and test
cases for disk-imaging tools. The results and specifications can be found on their Web site
(http://www.cftt.nist.gov/disk_imaging.htm).

Reading the Source Data

Using the general acquisition theory that was previously described, there are two major parts
of the process. First, we need to read data from a source, and then we need to write it to the
destination. Because this book focuses on the analysis of volume and file system data, we are
going to cover the process of acquiring at the disk level (because that is where the volume
data structures are located). This section examines the issues associated with reading a disk,
and the next major section examines the issues associated with writing to a destination. For
this section, we assume that a typical IA32 system (such as x86/i386) is being used for the
acquisition, and we will discuss how to access the data, handle errors, and reduce the risk of
writing data to the suspect drive.

Direct versus BIOS Access
As we saw in Chapter 2, "Computer Foundations," there are two methods in which the data
on a disk can be accessed. In one method, the operating system or acquisition software
accesses the hard disk directly, which requires that the software know the hardware details. In
the second method, the operating system or acquisition software accesses the hard disk
through the Basic Input/Output System (BIOS), which should know all the hardware details.
At a casual glance, there do not seem to be many differences between these methods, and
using the BIOS seems easier because it takes care of the hardware details. Unfortunately, it is
not that straightforward when it comes to doing an investigation.
Figure 3.1. Two applications are trying to determine the size of a disk. The BIOS is not properly
configured and says that the 12GB disk is only 8GB.
How Big Is How Big

Disk0 |p B are you?
gl
App #1 1 0 Disk 0 App #2
8GB S 12GB

When the BIOS is used, there is a risk that it may return incorrect information about the disk.
If the BIOS thinks that a disk is 8GB, but the disk is really 12GB, the INT13h functions will
give you access to only the first 8GB. Therefore, if you are doing an acquisition of the disk,

A

Y

44

you will not copy the final 4GB. We can see this in Figure 3.1, where two applications are
trying to identify the size of a disk using different methods.

This scenario can happen in a couple of different ways. One case is when the BIOS is
configured for a specific hard disk geometry that is different from the one installed. In
another case, an acquisition tool uses a legacy method of requesting the size of the disk.
There are two ways that an application can ask the BIOS for a disk size. One is through the
original INT13h function that suffers from the 8 GB limit and returns the size using the disk's
geometry in CHS format. The second method is to use an extended INT13h function that
returns the size in LBA format. The CFTT group at NIST had a 2GB disk and a computer
where two different sizes were returned from the INT13h and the extended INT13h functions.
The extended INT13h result was correct, but the legacy INT13h result was too small [U.S.
Department of Justice 2003].

Occasionally, an e-mail is sent to one to the digital forensic e-mail lists from someone who
acquired a disk using two different tools and got different sized images. The reason is usually
because one of the tools used the BIOS and the other did not. Make sure that you know how
your acquisition tools access the disk, and if the tool uses the BIOS, make sure it reports the
full disk before you acquire the disk. The BIOS adds one more location where an error can be
introduced into the final image, and it should be avoided if better alternatives exist.

Dead Versus Live Acquisition

An investigator has the choice of performing a dead or a live acquisition of data. A dead
acquisition occurs when the data from a suspect system is being copied without the assistance
of the suspect operating system. Historically, the term dead refers to the state of only the
operating system, so a dead acquisition can use the hardware from the suspect system as long
as it is booted from a trusted CD or floppy. A live acquisition is one where the suspect
operating system is still running and being used to copy data.

The risk of conducting a live acquisition is that the attacker has modified the operating
system or other software to provide false data during the acquisition. To provide an analogy
to the physical world, imagine the police arriving at a crime scene where there are several
people and it is unknown whether any were involved in the crime. A little while later, the
police are looking for a certain object, and they ask one of these unknown people to go into
one of the rooms and look for the object. The person comes back to the officer and says that
he could not find the object, but should the officer trust him? Maybe this person was involved
in the crime, and the object was in the room, but he destroyed it when he was sent in to look
for it.

Attackers frequently install tools called rootkits into systems that they compromise, and they
return false information to a user [Skoudis and Zeltser 2004]. The rootkits hide certain files in
a directory or hide running processes. Typically, the attackers hide the files that they installed
after compromising the system. An attacker could also modify the operating system so that it
replaces data in certain sectors of the disk while it is being acquired. The resulting image
might not have any evidence of the incident because it was replaced. When possible, live
acquisition should be avoided so that all evidence can be reliably collected.

It is common for an investigator to boot a suspect system using a trusted DOS floppy or
Linux CD that has been configured to not mount drives or modify any data. Technically, it is
possible for the suspect to have modified their hardware so that it returns false data even with
a trusted operating system, but that is much less likely than the operating system being
tampered with.

45

Error Handling
When an acquisition tool is reading data from a disk, it needs to be capable of handling
errors. The errors could be caused by a physical problem where the entire drive no longer
works, or the errors could be in a limited number of sectors. If only a limited number of
sectors is damaged, a normal acquisition can occur, provided that the acquisition tool
properly handles the errors.
The generally accepted behavior for dealing with a bad sector is to log its address and write
Os for the data that could not be read. Writing Os keeps the other data in its correct location. If
the sector were ignored instead of writing Os, the resulting copy would be too small, and most
analysis tools would not work. Figure 3.2 shows a series of values that are being acquired.
Three of the values have errors and cannot be read, so Os are written to the copy.

Figure 3.2. The original has three errors in it that have been replaced by 0s.

Original | 342622 |ouoos | omexx | 826193 | 153068 | oo | 648633 | 774628

Y Y Y Y Y
Copy | 342822 | 000000 | 000000 | 826193 | 153068 | 000000 | 648633 | 774628

Host Protected Area

When acquiring data from an ATA disk, you should pay attention to the Host Protected Area
(HPA) of the disk because it could contain hidden data. Unless an acquisition tool looks for
an HPA, it will not be acquired. Refer to Chapter 2 for more information about HPAs.

A tool can detect an HPA by comparing the output of two ATA commands. The
READ_NATIVE_MAX_ADDRESS command gives the total number of sectors on the disk,
and the IDENTIFY_DEVICE returns the total number of sectors that a user can access. If an
HPA exists, these two values will be different.

If you do not have access to a tool that will execute the necessary ATA commands, you may
have to compare the number of sectors that are copied during an acquisition with the number
of sectors that is documented on the label of the disk. Many of the current acquisition tools on
the market will detect an HPA, and there are also specialized tools such as BXDr
(http://www.sandersonforensics.co.uk/BxDR.htm) by Paul Sanderson, diskstat in
The Sleuth Kit, pr1vETID by MyKey Technology (http://www.mykeytech.com), and hpa by
Dan Mares (http://www.dmares.com/maresware/gk.htm#HPA).

If you encounter a disk with an HPA and you want to gain access to the hidden data, you will
need to change the disk configuration. An HPA is removed by setting the maximum user
addressable sector to be the maximum sector on the disk. This can be done using the
volatility bit such that the configuration change will be lost when the hard disk is powered
off. This command may be blocked by some hardware write blockers, which will be
discussed later in this chapter.

The process of removing an HPA involves changing the disk configuration. There is an
extremely rare possibility that the disk controller or acquisition tool has not properly
implemented HPA changes, and data could be lost. Therefore, you might consider imaging
the disk with the HPA before you remove it. If the removal process causes any damage, you
still have the original image to analyze. We will see an example of a disk with an HPA in the
dd case study later in this chapter. If you need to remove an HPA, it should be documented in
your notes.

46

Device Configuration Overlay

When acquiring data from a newer ATA disk, you should look for a Device Configuration
Overlay (DCO), which could cause the disk to look smaller than it really is. A DCO is similar
to an HPA, and they can both exist at the same time. DCOs were discussed in Chapter 2.

A DCO is detected by comparing the output of two ATA commands. The
READ_NATIVE MAX_ ADDRESS command returns the maximum sector of the disk that
normal ATA commands have access to, and the DEVICE_CONFIGURATION IDENTIFY
command returns the actual physical number of sectors. If these are different, a DCO exists
and needs to be removed if all data are going to be acquired.

To remove a DCO, the disk configuration must be changed using the
DEVICE_CONFIGURATION_SET or DEVICE_CONFIGURATION_RESET commands.
Both of these changes are permanent and will not be revoked at the next reset as is possible
with HPA. Currently, there are few tools that detect and remove DCO. The Image MASSter
Solo 2 from ICS (http://www.icsforensic.com) Will copy the sectors hidden by a DCO.
As with HPA, it is safest to make a copy of the drive with the DCO in place and then remove
it and make a second copy. When you remove a DCO, be sure to document the process. Also
test whether your hardware write blockers allow the DCO to be removed.

Hardware Write Blockers

One of the investigation guidelines that we discussed in Chapter 1 was to modify the original
data as little as possible. There are many acquisition techniques that do not modify any of the
original data, but mistakes can happen. Further, there are also some acquisition techniques
that can modify the original data, and we may want to prevent that.

A hardware write protector is a device that sits in the connection between a computer and a
storage device. It monitors the commands that are being issued and prevents the computer
from writing data to the storage device. Write blockers support many storage interfaces, such
as ATA, SCSI, Firewire (IEEE 1394), USB, or Serial ATA. These devices are especially
important when using an operating system that could mount the original disk, such as
Microsoft Windows.

Figure 3.3. The read request for sector 5 is passed through the write blocker, but the write
command for the same sector is blocked before it reaches the disk.

Read Command Write Command

C — C -
o |8 0 B —
M Read | Read M Writer
T| Sectors| L1 Sectors T| Sectors L
R — 8] - R - O ----

'C " .

| Disk 0
L Sector 5 | g| Sector s L E

Data | Data

E | P E A
R | - R -

We discussed ATA commands in Chapter 2 and saw that a disk should not perform any
actions until its command register is written to. So, in theory, the most basic type of ATA
hardware write blocker is a device that prevents the controller from writing any values to the
command register that could cause data to be written to or erased from the disk. However,
such a device might allow the controller to write data into other registers. This is analogous to
being able to load a gun, but not being able to pull the trigger. We can see in Figure 3.3 that
read commands are passed to the disk, but write commands are not.

47

The nNowrite device by MyKey Technologies has a more advanced design and works as a
state-based proxy between the controller and hard disk [MyKey Technology 2003]. It does
not send any data or command to the hard disk until it knows that it is a safe command.
Therefore, the command arguments are not written to the registers until the Nowrite device
knows what command they are for. This makes the data transfers slower, but it is easier to
show that no dangerous commands were written. Using the previous gun analogy, this
process checks each bullet and allows only blanks to be loaded.

I mentioned hardware write blockers in the previous HPA and DCO sections and want to
readdress those points. To remove an HPA or DCO, commands are sent to the disk. These
commands modify the device and should be stopped by hardware write blockers. The
NoWrite device makes an exception and allows the SET_MAX command to be executed if
the volatile bit is set such that the change is not permanent. All other SET_MAX and
DEVICE_CONFIGURATION commands are blocked. Other write blockers may choose to
allow all these commands to pass, and others may block them all. At the time of this writing,
there is little documentation on which commands are being blocked, so you should check
with your vendor and conduct your own tests.

Like all investigation tools, testing of hardware write blockers is important, and the CFTT
group at NIST has published a specification for hardware write blockers
(http://www.cftt.nist.gov/hardware _write_block.htm). The specification classifies
the ATA commands as non-modifying, modifying, and configuration. The specification states
that modifying commands must be blocked and optionally return success or failure.

Software Write Blockers

In addition to hardware write blockers, there are also software write blockers. At one point,
most digital forensic tools were DOS-based and used the INT13h method to access a disk.
Software write blockers were frequently used to prevent the disk from being modified during
the acquisition and examination. In this section, we will describe how they work and what
their limitations are.

The software write blockers work by modifying the interrupt table, which is used to locate the
code for a given BIOS service. The interrupt table has an entry for every service that the
BIOS provides, and each entry contains the address where the service code can be found. For
example, the entry for INT13h will point to the code that will write or read data to or from the
disk.

A software write blocker modifies the interrupt table so that the table entry for interrupt Ox13
contains the address of the write blocker code instead of the BIOS code. When the operating
system calls INT13h, the write blocker code is executed and examines which function is
being requested. Figure 3.4 shows an example where the software write block has been
installed and blocks a write command. A write blocker allows a non-write function to execute
by passing the request directly to the original INT13h BIOS code.

48

Figure 3.4. A BIOS interrupt table without a write block installed and with a software write
block installed that prevents writes from being executed.
Without Software Write Blocker

Interrupt -
Table C
BIOS 0
wite DiskCode wiite || Write
Sector 5 Sector5 | 1| Sectors
13h - = =
0 Disk O
L
L
E
R
With Software Write Blocker
Interrupt Software
Table Write Blocker
Code BIOS
Write Disk Code ‘
Sector 5 if (write)
13h then exit [~ 77 ;I

else continue Disk 0

lamrro3=Z00 |

Software write blockers are not as effective as hardware blockers because software can still
bypass the BIOS and write data directly do the controller, and the BIOS can still write data to
the disk because it has direct access to the controller. In general, if you want to control access
to a device, you should place the controls as close to the device as possible. The hardware
write blockers are as close to the hard disk as possible, on the ribbon cable.

The CFTT group at NIST has developed requirements and has tested software write block
devices. The details can be found on their Web site (http://www.cftt.nist.gov/

software_write_block. htm).

Writing the Output Data

After we read the data from the source disk, we need to write them somewhere. In this
section, we will discuss where to save data and the various formats in which data can be
saved.

Destination Location
When we save the data, we can write them either directly to a disk or to a file. We will
examine both options in this section.

Before there was specialized analysis software, an investigator either booted the suspect
system or mounted the disks in her analysis system. She acquired the drive by copying the
data directly to another disk. In other words, sector 0 of the source disk was identical to
sector O of the destination disk. The resulting disk was frequently called a duplicate copy or a
cloned copy. This method can cause problems when the destination disk is bigger than the
source disk because it can be difficult to tell exactly where the copy ends. When acquiring
directly to disk, it is recommended that the disk be wiped with zeros before acquisition so
that unrelated data, possibly from a previous investigation, are not are not confused with data

49

from the suspect system. A second problem with acquiring to disk is that some operating
systems, such as Microsoft Windows, will try to mount any disk, and the copy could be
mounted by the acquisition system and have its data changed. You also can run into
difficulties if the original and destination disks have different geometries because some of the
data structures rely on the geometry to describe locations.

Currently, the most common output location is to save the data to a file on a hard disk or CD-
ROM. With a file, it is easy to know the boundaries of the data, and operating systems will
not try to mount it automatically. The file is frequently called an image or a duplicate image.
Many tools will allow you to break an image file into smaller pieces so that they fit onto CDs
or DVDs. Some investigators will wipe the disks that store image files so that they can more
easily testify that there could not have been any contamination from a previous case.

Image File Format

If we save the data to a file, we have a choice of in what format the image will be. A raw
image contains only the data from the source device, and it is easy to compare the image with
the source data. An embedded image contains data from the source device and additional
descriptive data about the acquisition, such as hash values, dates, and times. Some tools will
create a raw image and save the additional descriptive data to a separate file. Recall that hash
values, such as CRC, MD35, and SHA-1, are used to show the integrity of data. Examples of
image formats can be seen in Figure 3.5.

Figure 3.5. Examples of (A) a raw image, (B) an embedded image with meta data interleaved in

the raw data, and (C) an image with the data stored in a raw format and the meta data stored in
a second file.
A) raw

image

B) embedded
image

C)

raw
image

external
metadata

In current implementations of acquisition tools, many of the embedded image formats are
proprietary, such as those from Guidance Software's EnCase''! and NTTI's SafeBack, and some
are documented, such as the format used by Technology Pathway's ProDiscover [Technology
Pathways 2003]. Most analysis tools import a raw image; therefore, it is the most flexible
format. The SMART tool from ASR Data and the dcf1dd/dccidd tools acquire data in a raw
format and have an external file with additional data.

Compressing the Image File

When we write the data to a file, we may have the option to compress the file so that it takes
up less storage space. Compression works by storing repetitive data more efficiently. For
example, if the data have 10,000 consecutive 1s, a compressed format may be able to

A specification to the format used by Expert Witness, which is a predecessor to EnCase, can be found at
http://www.asrdata.com/SMART /whitepaper.html.

50

describe that in a few hundred bits instead of 10,000 bits. If the data are random, there will be
little repetition, and compression will not be as effective. If you compress data that have
already been compressed, the result will not be much smaller. For example, JPEG images
have compression in them, and their size does not change if they are compressed.

When an image is compressed, any analysis tool you use it with must support the
compression type. This is similar to using an image format in which data are embedded. Most
general types of compression require you to decompress the entire file before it can be used.
Examples of this include the Winzip tools for Windows and the gzip tools in Unix. Special
compression algorithms will allow you to uncompress a small part of the compressed file,
and those are the ones that should be used by acquisition tools so that you do not have to
uncompress the entire image.

The benefit of compression is that you can acquire a storage device to a smaller image file,
although the actual amount of data saved depends on the acquired data. The negatives of
compression are as follows:

¢ You might be limited by the number of analysis tools that support the format.
e Acquisition might take longer because the software must perform the compression.

e Analysis might be slower because the analysis tool must decompress the image when
it reads data from it.

Network-based Acquisition

The basic acquisition theory also allows you to create an image file on a remote computer by
using a network. In this case, data are read from the source disk, transmitted to the destination
host via a network, and written to a file. This method of acquisition is convenient if you
cannot get access to the suspect disk or do not have the correct adaptors or interface for the
suspect disk. Many current tools support network-based acquisition of dead and live systems.
Some offer encryption to provide confidentiality on the network. Compression can be useful
for the transmission to reduce the amount of data sent over a slow network.

Integrity Hashes

In Chapter 1, we discussed some of the core concepts of an investigation, one of which was
to calculate hash values for evidence so that we can later verify the integrity of the data.
Some acquisition tools will calculate a hash while the data are being copied, and others
require a separate tool. In many cases, the hashes are stored in either an embedded image or
an external file with a raw image. Having the hashes embedded in the image does not provide
any additional security or integrity.

It is important to note what the hashes actually do for you. Any hash that is stored with the
image will not ensure that someone has not modified the data. After all, if someone modifies
the image, they can also recalculate the hashes, even if they are embedded in the format. A
program could be easily written to do this. To prove the integrity of an image file using a
digital hash, you will need to use a cryptographic signature and a trusted time source. This
requires a lot of overhead; therefore, a much easier method is to write the hash value down in
your notebook. Then someone will have to modify the image, recalculate the hash, and
rewrite your notebook.

While hashes are important to later prove the integrity of an image, they can also be used to
show the accuracy of an acquisition process and that the acquisition process did not modify
the original disk. By calculating the hash of the disk before it is acquired and comparing that
value with the hash of a raw image, you can show that the raw image contains the same data
that were on the original disk. Ideally, the original hash should be calculated with a tool that

51

is independent of the acquisition tools so that any errors are not applied to both the control
case and the actual image.

Note that the previous hashing process reads only the data that are available to the tool. If
hardware or software problems prevent you from accessing all bytes in a disk, the hash of the
disk can equal the hash of the image file even though the image file does not represent all
data on the disk. For example, if the tool can read only the first 8GB of a 12GB disk, the tool
will compute the hash of the first 8GB of the disk, copy the first 8GB of data, and then
compute the hash of the 8GB image file.

Another consideration for hashes is how often they are calculated. Hashes are most
commonly used to identify when a value in a chunk of data has been changed. If the hash
shows that a value in the chunk has been changed, the chunk must not be used. Calculating
hashes of smaller chunks can minimize the impact of an integrity failure. If any chunk of data
fails an integrity test, then it will not be used, but the rest of the image will.

A Case Study Using dd

To illustrate the acquisition process, I will describe how we can do an acquisition with the dd
tool. dd is one of the most simple and flexible acquisition tools, but it is command line-based
and can be more complex to learn than other tools because each feature and option can be
specified. dd comes with many of the UNIX versions and is available for Windows."! For
this case study, we will focus on running it in Linux.

At its core, dd copies a chunk of data from one file and writes it to another. It does not care
what type of data it is copying and does not know about file systems or disks, only files.

dd reads data from the input source in block-sized chunks, and the default block size is 512
bytes. It reads data from an input source, which is specified with the i £= flag. If the i f= flag
is not given, it takes the standard input as the input source, which is typically the keyboard.
dd writes the data to an output file, which is specified with the of= flag. If that is not given,
the data are written to standard output, which is usually the display. As an example, to copy
the contents of filel.dat, which is 1024 bytes, to file2.dat in 512-byte blocks, we use

dd if=filel.dat of=file2.dat bs=512
2+0 records in
2+0 records out

The final two lines show that two complete blocks were read from filel.dat, and two
complete blocks were written to file2.dat. If a full block was not used during the last read and
write, the final two lines would have ended with '+1' instead of '+0.' For example, if filel.dat
were 1500 bytes instead of 1024 bytes, the following would have been seen:

dd if=filel.dat of=file2.dat bs=512

2+1 records in
2+1 records out

Note that the resulting file will be the full 1500 bytes. dd will try to write in block-sized
chunks, but if there is not enough data, it will only copy what it has.

Input Sources

In Linux, there is a device for each storage device and partition, and it can be used as the
input file. For example, the master ATA disk on the first channel is /dev/hda, and we can
use that device name with the if= flag to tell dd to copy data from the disk to a file.

D]Gemge(hnwfsvmsbnisawﬁhbk at http://users.erols.com/gmgarner/forensics/, and
the UnxUltils version is available at http://unxutils.sourceforge.net

52

Microsoft Windows does not have an actual device file for the hard disks, but you can use the
\\ .\ syntax to reference a disk, \\.\PhysicalDrive0, for example.

The default block size is 512 bytes, but we can specify anything we want using the bs= flag.
We can copy 1 byte at a time, or we can copy 1GB at a time. Any value will work, but some
values will give you better performance than others. Most disks read a minimum of 512 bytes
at a time and can easily read more at the same time. Using a value that is too small is wasteful
because the disk will need to be frequently read, and time will be wasted in the copying
process. If you choose a value that is too large, you will waste time filling up the buffer in dd
before the copy is performed. I have found that values in the 2KB to 8KB range work well.

Linux accesses the hard disk directly and does not use the BIOS, so we do not risk getting
incorrect data from the BIOS about the size of the disk. That also means that there are not
software write blockers for Linux, but you can use a hardware device if you want.

HPA

As previously stated, dd knows about only files and therefore does not know anything about
ATA HPAs. There are several methods of detecting an ATA HPA in Linux, and I will cover
those here.

The scenario for this example is a 57GB disk with 120,103,200 sectors. I have placed the
string "here i am" in sector 15,000, as seen here:

dd if=/dev/hdb bs=512 skip=15000 count=1 | xxd

1+0 records in

1+0 records out

0000000: 6865 7265 2069 2061 6d0a 0000 0000 0000 here i am.......

Next, I created an HPA in the final 120,091,200 sectors. In other words, there are only 12,000
sectors that the OS or an application can access. We can see this because I can no longer see
the string in sector 15,000:

dd if=/dev/hdb bs=512 skip=15000 count=1 | xxd

0+0 records in
0+0 records out

No records were copied because it could not read the data. There are several ways of
detecting an HPA in Linux. Newer versions of Linux display a message in the dmesg log.
Note that this log has a limited size, and entries will be overwritten if there is an application
that is writing a lot of warning or error messages. Its output for our disk is as follows:

dmesg | less

[REMOVED]

hdb: Host Protected Area detected.

current capacity is 12000 sectors (6 MB)
native capacity is 120103200 sectors (61492 MB)

Not all versions of Linux will display this message, though. Another method of detecting an
HPA is using the hdparm tool that comes with Linux. It displays details about a hard disk,
and we need to use the -1 flag to obtain the total number of sectors. We will compare this
value with the value written on the disk or from the vendor's Web site. This output will also
tell us if the drive supports HPA, which older disks do not.

hdparm -I /dev/hdb

[REMOVED]
CHS current addressable sectors: 11088
LBA user addressable sectors: 12000
LBA48 user addressable sectors: 12000
[REMOVED]
Commands/features:
Enabled Supported:

* Host Protected Area feature set

33

In this case, the label of my drive says that it has 120,103,200 sectors; therefore, many sectors
are not addressable. Lastly, you can use the diskstat tool from The Sleuth Kit. It displays
the maximum native address and the maximum user address.

diskstat /dev/hdb

Maximum Disk Sector: 120103199
Maximum User Sector: 11999

** HPA Detected (Sectors 12000 - 120103199) **

To access the data, we need to reset the maximum address. One tool that allows us to do this
is setmax (http://www.win.tue.nl/~aeb/linux/setmax.c). We will run this tool and set
the maximum number of sectors in the drive, which is 120,103,200 in this example. This tool
modifies the configuration of your drive, and extreme care must be taken (which means you
should also take good notes while you doing it). Also note that this tool sets the maximum
address as nonvolatile, so the change is permanent. If you are going to use a tool like this, test
it on other drives before you use it on a disk that may contain evidence.

setmax —--max 120103200 /dev/hdb

After resetting the maximum address, you can use dd to acquire the full disk. Record the
location of the HPA so that you can return the disk to its original state and so that you will
know where it started when you analyze the data.

Output Destinations

The output from dd can be either a new file or another storage device. For example, the two
following examples are performed in a Linux environment. The first copies the master ATA
disk on the primary channel to a file, and the second example copies the master ATA disk on
the primary channel to the slave ATA disk on the second channel.

dd if=/dev/hda of=/mnt/hda.dd bs=2k

dd if=/dev/hda of=/dev/hdd bs=2k

If you do not specify the output file, the data will be written to the display. This can be useful
to calculate the MD5 hash, to extract the ASCII strings, or to send the data to a remote system
using a network. For example, to hash a disk, we could use the md5sum command that comes
with Linux:

dd if=/dev/hda bs=2k | md5sum

We can also send data to a server using the netcat (http://www.atstake.com/research/
tools/) or cryptcat (http://sf.net/projects/cryptcat) tools. With netcat, a trusted
evidence server at IP address 10.0.0.1 would run the following to open a network port on port
7000 and save incoming data to a file:

nc -1 -p 7000 > disk.dd
The system with the source disk in it would be booted from a trusted Linux CD, and dd

would be executed with the data piped to netcat, which would send data to the server at
10.0.0.1 at port 7000. The connection would close after three seconds of no activity:

dd if=/dev/hda bs=2k | nc -w 3 10.0.0.1 7000

Error Handling

If dd encounters an error while reading the input file, the default action is to stop copying
data. If you specify the conv=noerror flag, dd will report the error and not stop.
Unfortunately, this method skips the blocks with bad data, and the image will be the wrong
size, and the data will be at the wrong addresses.

54

To maintain the addresses in the image, the sync flag should be given. The sync flag forces
dd to write data in block-sized chunks, and if there is not enough data for a full block, it pads
the data with Os. Therefore, when an error is encountered, the invalid data will be replaced
with Os. The downside of always using these flag options is that the resulting image will
always be a multiple of the block size, which may not be the actual size of the original
storage device. For example, if I choose a block size of 4,096 bytes, but the size of my (really
small) disk is 6,144 bytes, the resulting image file will be 8,192 bytes instead of 6,144 bytes.
An example of using the error handling options is

dd if=/dev/hda of=hda.dd bs=2k conv=noerror, sync

The dd_rescue tool from Kurt Garloff (http://www.garloff.de/kurt/linux/ddrescue)
is similar to the original dd, but it has error handling enabled by default. If it encounters an
error, it starts using a smaller block size and writes Os to the blocks that could not be read.
dd_rescue can also copy from the end of the disk toward the front, which the author claims
can be useful when bad sectors exist.

Cryptographic Hashes

Normally, when you want a cryptographic hash of a file and you are using dd, you must use
another utility, such as md5sum. The cryptographic hash of an image is calculated to later
prove an image's integrity. Jesse Kornblum and Reid Leatzow at the U.S. Department of
Defense's Cyber Crime Center created a version of dd that can calculate hashes of the data
being copied. There are currently two versions of this tool. The original version is dcfldd
(http://sourceforge.net/projects/biatchux/), and it can calculate only the MD35 hash.
The new version is dccidd (available at http://www.dc3.gov or by sending email to
dcci@dc3.gov), and it can calculate the MDS5, SHA-1, and SHA-256 hashes in parallel (the
change in name reflects a reorganization of the lab).

The same basic flags that we saw for dd also apply to these tools, and new flags were added
for the hashes. The hashwindow= flag allows you to specify how frequently a hash should be
calculated. If the value is 0, only one hash is calculated of the entire file. If a non-zero byte
size is given, a hash is calculated at each point in the file, and a final hash is calculated. The
hashes can be saved to an output file using the hashlog= flag. dcf1dd computes only the
MDS5 hash, but dccidd has the hash= flag that allows you to specify which hashes should be
calculated. By default, the MDS5 and SHA-1 are calculated in parallel, but you can specify
'md5,' 'shal,’ or 'sha256.'

For example, if you wanted to image a Linux hard disk and calculate hashes for every 1MB
you would use the following:
dcfldd if=/dev/hda of=/mnt/hda.dd bs=2k hashwindow=1M hashlog=/mnt/hda.hashes

The hashlog has the following format:

0 - 1048576: 970653dad48£047£3511196c8a230£64c
1048576 - 2097152: b6d81b360a5672d80c27430£39153e2¢c

103809024 - 104857600: b6d81b360a5672d80c27430£39153e2¢c
104857600 - 105906176: 94al1l71ec3908687£d1£456087576715b
Total: 28d34393£36958£8£fc822ae3980£37c3

Each line starts with the range of bytes that the hash applies to and ends with the hash value.
The last value is the hash for the entire image. The log file for dccidd is slightly different
because it includes the SHA-1 hash, and the range field is padded with Os. Here is the output
when the hashwindow was set to 512 bytes (the SHA-1 and MDS5 hashes are typically on the
same line):

000000 - 000511: 5dbdl2lcad07429edl76f7fac6al33d6

55

09cae0d9f2a387bb3436al5aa514b16£9378efbf

000512 - 001023: 91cf74d0ee95d4b60197e4cO0ca710bed
0£71d8729ad39%9ae094e235ab31a9855b2a5a5900

001024 - 001535: 8a0al0f43b2bcd9%9el385628f7e3a8693
641b9%0828e41cd391£93b5£f3bfaf2dld7b393dal

[REMOVED]

The Windows version dd from George Garner, which was previously discussed, also has

built-in MDS5 features. With Garner's tool, supplying the —md5sum flag calculates the MD5
hash for the file. It can also save the hash to a file using the —md5out flag.

Summary

The hard disk is where most of the evidence is found in current investigations, which will
likely be the case for many years to come, at least until all hard disks are encrypted.
Acquisitions are very important in the investigation process because if they are not performed
correctly, data may not exist for the investigation. This section has outlined the general theory
of acquisitions and given a case studying using dd. dd is a fairly simple tool, but it is
command line and can cause confusion because it has many options.

Bibliography

Skoudis, Ed, and Lenny Zeltser. Malware: Fighting Malicous Code. Upper Saddle River:
Prentice Hall, 2004.

MyKey Technology, Inc. "Technical White Paper: No Write Design Notes." 2003.
https://mykeytech.com/nowritepaperl.html.

Technology Pathways, Inc. "ProDiscover Image File Forma." 2003.
https://wwwtechpathways.com/uploads/ProDiscoverImageFileFormatv4.pdf.

U.S. Department of Justice. "Test Results for Disc Imaging Tools: SafeBack 2.18." NCJ
200032, June 2003. https://www.ncjrs.org/pdffilesl/nij/20032.pdf.

56

Part ll: Volume Analysis
Chapter 4. Volume Analysis

This chapter begins Part 2, "Volume Analysis," of the book, and we are going to now discuss
volume analysis. Volume analysis involves looking at the data structures that are involved
with partitioning and assembling the bytes in storage devices so that we get volumes.
Volumes are used to store file system and other structured data, which we will analyze in Part
3, "File System Analysis," of the book. This chapter takes an abstract approach to the basic
concepts of volume analysis and discusses the principles that apply to all types of volume
systems. The next three chapters will focus on specific types of partitioning and assembly
systems.

Introduction

Digital storage media is organized to allow efficient retrieval of data. The most common
experience with a volume system occurs when installing Microsoft Windows and creating
partitions on the hard disk. The installation process guides the user through the process of
creating primary and logical partitions, and in the end the computer has a list of "drives" or
"volumes" in which to store data. A similar process occurs when installing a UNIX operating
system, and it is becoming more common in large storage environments to use volume
management software to have multiple disks appear as if they comprise one large disk.

During a digital investigation, it is common to acquire an entire disk image and import the
image into analysis tools. Many digital investigation tools automatically break the disk image
into partitions, but sometimes they have problems. The concepts in this part of the book will
help an investigator understand the details of what a tool is doing and why it is having
problems if a disk has become corrupted. For example, when partitions on the disk have been
deleted or modified by the suspect or the tool simply cannot locate a partition. The
procedures in these chapters may also be useful when analyzing the sectors that are not
allocated to a partition.

This chapter provides background theory, an overview of tools, and types of analysis
techniques. The next two chapters will provide the details for several partition systems,
including DOS partitions, Apple Partitions, BSD partitions, and SUN slices. The final chapter
in this part of the book covers multiple disk volume systems, such as RAID and disk
spanning.

Background

Volume Concepts

Volume systems have two central concepts to them. One is to assemble multiple storage
volumes into one storage volume and the other is to partition storage volumes into
independent partitions. The terms "partition" and "volume" are frequently used together, but I
am going to make a distinction.

A volume is a collection of addressable sectors that an Operating System (OS) or application
can use for data storage. The sectors in a volume need not be consecutive on a physical
storage device; instead, they need to only give the impression that they are. A hard disk is an
example of a volume that is located in consecutive sectors. A volume may also be the result
of assembling and merging smaller volumes.

57

General Theory of Partitions
One of the concepts in a volume system is to create partitions. A partition is a collection of
consecutive sectors in a volume. By definition, a partition is also a volume, which is why the
terms are frequently confused. I will refer to the volume in which a partition is located as the
partition's parent volume. Partitions are used in many scenarios, including

e Some file systems have a maximum size that is smaller than hard disks.

e Many laptops use a special partition to store memory contents when the system is put
to sleep.

e UNIX systems use different partitions for different directories to minimize the impact
of file system corruption.

e [A32-based systems that have multiple operating systems, such as Microsoft
Windows and Linux, may require separate partitions for each operating system.
Consider a Microsoft Windows system with one hard disk. The hard disk volume is
partitioned into three smaller volumes, and each has a file system. Windows assigns the

names C, D, and E to each volume. We can see this in Figure 4.1.

Figure 4.1. An example hard disk volume is organized into three partitions, which are assigned
volume names.

Hard Disk Volume

C: Volume D: Volume E: Volume

Each operating system and hardware platform typically uses a different partitioning method.
We will cover the different implementations in Chapter 5, "PC-based Partitions," and Chapter
6, "Server-based Partitions," but we will examine the basic components here. The common
partition systems have one or more tables, and each table entry describes a partition. The data
in the entry will have the starting sector of the partition, the ending sector of the partition (or
the length), and the type of partition. Figure 4.2 shows an example table with three partitions.
Figure 4.2. A basic table with entries for the start, end, and type of each partition.
Start| End Type
0 99 FAT |—
100 249 NTFS
300 589 NTFS

The purpose of a partition system is to organize the layout of a volume; therefore, the only
essential data are the starting and ending location for each partition. A partition system

58

cannot serve its purpose if those values are corrupt or non-existent. All other fields, such as a
type and description, are nonessential and could be false.

In most cases, the first and last sector of a partition does not contain anything that identifies
them as the border sectors. This is similar to how most property lines are not marked. A
surveyor and documents are typically needed to identify the exact property lines, and the
partition data structures are the equivalent to the survey documents. When the partition
system structures are missing, the partition boundaries can sometimes be guessed using
knowledge of what was stored inside of the partition. This is analogous to guessing property
boundaries based on the landscape.

Note that a partition system is dependent on the operating system and not the type of interface
on the hard disk. Therefore, a Windows system uses the same partition system regardless if
the disk uses an AT Attachment interface (ATA/IDE) or a Small Computer Systems Interface
(SCSI).

Usage of Volumes in UNIX

UNIX systems typically do not use volumes the same way a Microsoft Windows system
does. This section is intended for users who are not familiar with UNIX, and it provides a
brief overview of how volumes are used in UNIX. A UNIX system administration book
should be consulted for more details.

In UNIX, the user is not presented with several "drives", such as c: and p:. Instead, the user
is presented with a series of directories that start at the root directory, or /. The subdirectories
of / are either subdirectories in the same file system, or they are mounting points for new file
systems and volumes. For example, a CD-ROM would be given the E: drive in Windows, but
it may be mounted at /mnt/cdrom in Linux. This allows the user to change drives by
changing directories, and in many cases the user is unaware that they have done so. Figure
4.3 shows how hard disk and CD volumes are accessed in Windows and UNIX.

Figure 4.3. Mount points of two volumes and a CD-ROM in (A) Microsoft Windows and (B) a
typical UNIX system.

(A) (B)

—
C: — ™| Volume #1 \Program Files\ / 4’{ Volume #1 }‘—"’ letc/
- J

\Windows\ > /mnt/cdrom/ —®| CD-ROM]
S —

D: — ™| Volume #2 —* Jjtmp/

> Jusr/ —®| Volume #2

To minimize the impact of drive corruption and to improve efficiency, UNIX typically
partitions each disk into several volumes. A volume for the root directory (/) stores basic
information, a separate volume may exist for the user's home directories (/home/), and
applications may be located in their own volume (/usr/). All systems are unique and may
have a completely different volume and mounting scheme. Some systems use only one large
volume for the root directory and do not segment the system.

General Theory of Volume Assembly

Larger systems use volume assembly techniques to make multiple disks look like one. One
motivation for this is to add redundancy in case a disk fails. If data are being written to more
then one disk, there exists a backup copy if one disk fails. Another motivation for this is to

59

make it easier to add more storage space. Volume spanning works by combining the total
storage space of multiple volumes so that one large volume is created. Additional disks can
be added to the larger volume with no impact on the existing data. We will cover these
techniques in Chapter 7, "Multiple Disk Volumes."

Let's look at a quick example. Figure 4.4 shows an example of two hard disk volumes with a
total of three partitions. Partition 1 is assigned a volume name of c: and a hardware device
processes partitions 2 and 3. The hardware device outputs one large volume, and that is
organized into two partitions, which are given volume names. Note that in this case the
hardware device does not provide increased reliability, only a larger volume.
Figure 4.4. A volume system that merges two partitions into one volume and partitions it.
Hard Disk Volume 1 Hard Disk Volume 2

Partition 2

1
; Partition 3

5
o
=+
=
3

Hardware
Device

Intermediate Volume

I I

I I

\ PZ'" Partition 5 !

| 1

i N
C: Volume D: Volume E: Volume

Sector Addressing

In Chapter 2, we discussed how to address a sector. The most common method is to use its
LBA address, which is a number that starts at O at the first sector of the disk. This address is
the physical address of a sector.

A volume is a collection of sectors, and we need to assign an address to them. A logical
volume address is the address of a sector relative to the start of its volume. Note that because
a disk is a volume, the physical address is the same as a logical volume address for the disk
volume. The starting and ending locations of partitions are typically described using logical
volume addresses.

When we start to talk about the contents of a partition, there is another layer of logical
volume addresses. These addresses are relative to the start of the partition and not the start of
the disk or parent volume. We will differentiate these by preceding the word volume with
"disk" or "partition." If a sector is not allocated to a partition, it will not have a logical
partition volume address. Figure 4.5 shows an example where there are two partitions and
unpartitioned space in between. The first partition starts in sector 0, so the logical partition
volume addresses in it are the same as the logical disk volume addresses. The second
partition starts in physical sector 864 and the logical disk volume addresses of these sectors
are 864 sectors larger than their logical partition volume addresses.

60

Figure 4.5. The logical partition volume address is relative to the start of the partition while the
logical disk volume address is relative to the start of the disk.

Partition 1 Partition 2
Starting Addres: 0 Starting Addres; 864
Physical Address: 100 Physical Address: 964
Logical Disk Violume Address: 100 Logical Disk Volume Address: 964
Logical Volume Partition Address: 100 Logical Volume Parition Address: 100

Physical Address: 569
Logical Disk Violume Address:; 569
Logical Volume Parition Address: N/A

Analysis Basics

Volume analysis occurs frequently, although many investigators may not realize it. In many
cases, an investigator acquires an entire hard disk and imports the image into his analysis
software to view the file system contents. To identify where the file system starts and ends,
the partition tables must be analyzed.

It is also important to analyze the partition layout of the volume because not all sectors need
to be assigned to a partition, and they may contain data from a previous file system or that the
suspect was trying to hide. In some cases, the partition system may become corrupt or erased,
and automated tools will not work.

Analysis Techniques

The basic theory of volume analysis is simple. For the partition systems, we want to locate
the partition tables and process them to identify the layout. The layout information is then fed
into a file system analysis tool that needs to know the offset of a partition, or it is printed to a
user so she can determine what data should be analyzed. In some cases, the data in a partition
or in between partitions needs to be extracted from the parent volume, which we will cover in
the next section. To analyze the data inside a partition, we need to consider what type of data
it is. Generally, it is a file system, and we will cover that in Part 3 of the book.

To analyze the assembly components to a volume system, we need to locate and process the
data structures that describe which volumes are merged and how they are merged. As we will
see in Chapter 7, there are many ways that the volumes can be merged. We will look for data
that are not part of the merging process and may contain data from a previous installation or
hidden data.

Consistency Checks

When analyzing volume systems, it can be useful to check each partition relative to the other
partitions. This can serve as a sanity check to determine where else evidence could be located
besides in each partition. Most partition systems do not require the entries to be in a sorted
order, so you or an analysis tool should sort them based on starting and ending location
before you do these consistency checks.

The first check looks at the last partition and compares its ending location with the end of its
parent volume. Ideally, it should end in the last sector of the volume. Figure 4.6(a) shows a
situation where the final partition ends before the end of the volume, and there are sectors
that could contain hidden or deleted data.

61

Figure 4.6. Five examples of how two partitions can be organized relative to each other. The
first three are valid, and the last two are not.

A) B) C)
Partition 1 Partition 1 Partition 1
Partition 2 Partition 2 Partition 2
D) E)
Partition 1 Partition 1
Partition 2 Partition 2

The next category of sanity checks compares the start and end sectors of consecutive
partitions, and there are four scenarios. The first scenario, shown in Figure 4.6(b), is valid,
and there are sectors in between two partitions that are not in a partition. The non-partitioned
sectors could have been used to hide data and should be analyzed. The second scenario,
shown in Figure 4.6(c), is what almost every system has, and the second partition starts
immediately following the first.

The third scenario, shown in Figure 4.6(d), is typically invalid, and the second partition starts
before the first partition ends. This creates an overlap, and in many cases this is an indication
that the partition table is corrupt. To determine which, if either, partition is correct, you need
to analyze the data inside each. The fourth scenario is shown in Figure 4.6(e), and it is also
typically invalid. The second partition is inside the first partition, and the contents of each
partition need to be analyzed to determine where the error is.

Extracting the Partition Contents

Some tools require a partition image as input, or we might want to extract the data in or in
between partitions to a separate file. This section will show how to extract the data, and the
techniques in this section apply to all partition systems. Extracting data is a simple process
when the layout is known. We show how to do it with the dd tool, which we already
discussed in Chapter 3, "Hard Disk Data Acquisition."

The dd tool is command line-based and takes several arguments. We will need the following
to extract partition data:

e if: The disk image to read from

e of: The output file to save to

e Dbs: The size of the block to read each time, 512 bytes is the default

e skip: The number of blocks to skip before reading, each of size bs

e count: The number of blocks to copy from the input to the output, each of size bs

62

In many cases, we will want to use a 512-byte block size because that is the size of a sector.
The default block size for dd is also 512 bytes, but it is always safer to specify it. We will use
the skip flag to specify the starting sector where the partition begins and the count flag to
specify how many sectors are in the partition.

Let's review an example of a DOS-based partition system. We used the mm1s tool from The
Sleuth Kit to list the contents of the partition table. We will cover the details of the output in
the later sections, but we can see that there are three file system partitions.

mmls -t dos diskl.dd

Units are in 512-byte sectors

Slot Start End Length Description
00: -————- 0000000000 0000000000 0000000001 Table #0
01: -—-———- 0000000001 0000000062 0000000062 Unallocated
02: 00:00 0000000063 0001028159 0001028097 Win95 FAT32 (0xO0B)
03: —-———- 0001028160 0002570399 0001542240 Unallocated
04: 00:03 0002570400 0004209029 0001638630 OpenBSD (0xA6)
05: 00:01 0004209030 0006265349 0002056320 NTFS (0x07)

The mm1s tool organizes the partition table entries based on their starting sector and identifies
the sectors that are not allocated to a partition. The first two lines, numbered 00 and 01, are
the primary partition table and the unused space between the partition table and first partition.
We see from the output that line 02 is a partition with a FAT32 file system, line 04 is a
partition for OpenBSD, and line 05 is a partition with an NTES file system. We also see that
line 03 is for unallocated space on the disk. A graphical representation of this data can be
found in Figure 4.7.

Figure 4.7. Layout of the example disk image.

o 1028097 o 1542240 . 1638630 o 2,056,320 -
FAT32 Unallocated OpenBSD NTFS
A A A A T A
0 83 1,028 160 2570400 4,208,030 6,265,349

To exact the file system partitions from the disk image, we take the starting sector and size of
each partition and plug them into dd as shown here:

dd if=diskl.dd of=partl.dd bs=512 skip=63 count=1028097
dd if=diskl.dd of=part2.dd bs=512 skip=2570400 count=1638630
dd if=diskl.dd of=part3.dd bs=512 skip=4209030 count=2056320

These commands take the diski1.dd file as input and save the output to files named
partl.dd, part2.dd, and part3.dd. For each one, blocks of 512 bytes each are copied. The
first partition is extracted by skipping 63 blocks before copying and then copying 1,028,097
blocks. In the mm1s output, we saw that the partition started in sector 63, so you may be
inclined to skip only 62 blocks. However, recall that the sector addresses start at 0, so we do
need to skip 63. The .dd extension is used here to show that these files are raw image files
that were created by a dd-like tool.

Some tools that list the layout will give the starting and ending sectors of a partition, and you
will need to calculate the partition size. To do this, subtract the starting sector from the
ending sector and add 1. We need to add 1 because subtracting takes the difference between
two numbers, but we need to include the last number. For instance, in the previous example
the size of the first partition is
1028159 - 63 + 1 = 1028097

63

To see the need to add 1, consider a smaller example where a partition starts in sector 2 and
ends in sector 4. Its size is 3 sectors:

4 -2+1=3

This dd process also can be used to extract the data in between partitions. For example, from
the mm1s output, we know that sectors 1,028,160 through 2,570,399 are unused. They can be
extracted with

dd if=diskl.dd of=unallocl.dd bs=512 skip=1028160 count=1542240

Other low-level tools, such as hex editors, also provide the ability to save sequential sectors
to a file.

Recovering Deleted Partitions

A common technique that is used to thwart a forensic investigation is to repartition a disk or
clear the partition structures so that the original structure is gone. A similar but more innocent
problem is recovering a system whose partition structures have become corrupt. Analysis
becomes much more difficult in these cases, but fortunately several tools exist to help recover
the partitions, and this section describes how they work.

Partition recovery tools work by assuming that a file system was located in each partition.
Fortunately, many file systems start with a data structure that has a constant "magic" or
signature value. For example, a FAT file system has the values 0x55 and OxAA in bytes 510
and 511 of the first sector. The partition recovery tools search for these signature values and
identify where a partition may have started.

When the search tool finds a signature, additional tests can be conducted on the range of
values that are valid for a given data structure. For example, a FAT file system has a field that
identifies how many sectors are in a cluster, and it must have a value that is a power of 2,
such as 1, 2, 4, 8, 16, 32, 64, or 128. Any other value would indicate that the sector was not
part of a FAT file system boot sector, even though it ended with 0x55AA.

The searching mechanism of each tool may vary. Some tools examine each sector and
compare it to known signatures. Other tools search only cylinder boundaries because
partitions are typically created on cylinder boundaries. Others may use data from the file
system data structures to learn how big the file system is and jump to the end before
searching for more known data structures.

An example of a Linux tool that can be used for partition recovery is gpart
(http://www.stud.uni—hannover.de/user/76201/gpart/).gpartcanidenﬁﬁ/alﬂnnber
of file system types by testing sectors and assessing which file system type is the most
probable. Its normal output is not specific enough for our needs, so the —v verbose flag must
be applied. In this example, the disk had three partitions and the partition table was cleared.
We run gpart on the raw disk image with the -v flag to identify the original partition
locations:
gpart -v disk2.dd
* Warning: strange partition table magic 0x0000.
[REMOVED]
Begin scan...
Possible partition (DOS FAT), size(800mb), offset (Omb)

type: 006 (0x06) (Primary 'big' DOS (> 32MB))

size: 800mb #s(1638566) s(63-1638628)

chs: (0/1/1)-(101/254/62)d (0/1/1)-(101/254/62)r

hex: 00 01 01 00 06 FE 3E 65 3F 00 00 00 A6 00 19 00

Possible partition (DOS FAT), size(917mb), offset (800mb)

type: 006 (0x06) (Primary 'big' DOS (> 32MB))
size: 917mb #s(1879604) s(1638630-3518233)

64

chs: (102/0/1)-(218/254/62)d (102/0/1)-(218/254/62)r
hex: 00 00 01 66 06 FE 3E DA E6 00 19 00 34 AE 1C 00

Possible partition(Linux ext2), size(502mb), offset (1874mb)

type: 131(0x83) (Linux ext2 filesystem)

size: 502mb #s(1028160) s(3839535-4867694)

chs: (239/0/1)-(302/254/63)d (239/0/1)-(302/254/63)«r

hex: 00 00 01 EF 83 FE 7F 2E 2F 96 3A 00 40 BO OF 00
We see from the output that there were likely two FAT partitions and one Ext2 partition. The
field at the end of the 'size:' line shows the location of the partition in sectors. If the -v flag
were not specified, the sector location would not have been printed. A similar tool is
TestDisk by Christophe Grenier (http://www.cgsecurity.org/testdisk.html). This
analysis technique works only when basic wiping or partition table corruption has occurred.

Summary

All large media devices have some type of volume system and it is analyzed in every
investigation, whether it is obvious or not. The volume systems exist to provide partitions or
compartments in the media and the partition systems describe where each partition begins
and where it ends. This chapter has given the overview of the technology, and we will next
explore the details of several partition and volume creation systems.

65

Chapter 5. PC-based Partitions

The last chapter provided an overview of volume analysis and why it's important. Now we're
going to leave the abstract discussion of volumes and dive into the details of the partition
systems used in personal computers. In this chapter, we will look at DOS partitions, Apple
partitions, and removable media. For each system, we review how it works and look at its
data structure. If you are not interested in the data structure details, you can skip those
sections. This chapter also covers special considerations that should be made when analyzing
these systems. The next chapter will examine server-based partitioning systems.

DOS Partitions

The most commonly encountered partition system is the DOS-style partition. DOS partitions
have been used with Intel IA32 hardware (i.e., 1386 / x86) for many years, yet there is no
official specification. There are many Microsoft and non-Microsoft documents that discuss
the partitions, but there is no standard reference.

In addition to there being no standard reference, there is also no standard name. Microsoft
now calls disks using this type of partition system Master Boot Record (MBR) disks. This is
in comparison to a GUID Partition Table (GPT) disk that is used with the Extensible
Firmware Interface (EFl) and the 64-bit Intel Itanium-based systems (IA64), which are
discussed in the next chapter [Microsoft 2004a]. Starting with Windows 2000, Microsoft also
differentiates between basic and dynamic disks. A basic disk refers to either an MBR or a
GPT disk, and the partitions in the disk are independent and standalone. Dynamic disks,
which are discussed in Chapter 7, "Multiple Disk Volumes," also can be either MBR or GPT
disks, and the partitions can be combined and merged to form a single, large partition. Basic
disks have traditionally been associated with DOS partitions, probably because GPT disks are
not yet as common. Therefore, using the current terminology, this chapter covers basic MBR
disks. However, we will use the simple term DOS partitions for this book.

DOS partitions are used with Microsoft DOS, Microsoft Windows, Linux, and IA32-based
FreeBSD and OpenBSD systems. DOS partitions are the most common but also the most
complex partitioning system. They were originally designed in the 1980s for small systems
and have been improved (i.e., hacked) to handle large modern systems. In fact, there are two
different partitioning methods that are used in this system. This section will give an overview
of the partitioning system, show the data structures in the system, show what tools can list the
layout, and discuss investigation considerations.

General Overview
In this section, we will examine the DOS partition concepts and boot code location. The data
structures are discussed in the following section.

Basic MBR Concepts

A disk that is organized using DOS partitions has an MBR in the first 512-byte sector. The
MBR contains boot code, a partition table, and a signature value. The boot code contains the
instructions that tell the computer how to process the partition table and locate the operating
system. The partition table has four entries, each of which can describe a DOS partition. Each
entry has the following fields:

e Starting CHS address

e Ending CHS address

e Starting LBA address

e Number of sectors in partition
e Type of partition

66

e Flags

Each table entry describes the layout of a partition in both CHS and LBA addresses. Recall
that the CHS addresses only work for disks less than 8 GB in size, but the LBA addresses
allow disks to be terabytes (TB) in size.

The type field in the partition identifies what type of data should exist in the partition.
Common examples include FAT, NTFS, and FreeBSD. The next section has a more
comprehensive list of partition types. The type value is used differently by different OSes.
Linux, for example, does not care about it. You can put a FAT file system inside of a
partition that has a type of NTFS, and it will mount it as FAT. Microsoft Windows, on the
other hand, relies on it. Windows will not try to mount a file system in a partition if it does
not support the partition type. Therefore, if a disk has a FAT file system inside a partition
with a Linux file system type, the user will not see the FAT file system from within
Windows. This behavior can be used to hide partitions from Windows. For example, some
tools will add a bit to a partition type that Windows supports so that it will not be shown
when Windows boots again.

Each entry also contains a flag field that identifies which partition is the "bootable" one. This
is used to identify where the operating system is located when the computer is booting. Using
the four entries in the MBR, we can describe a simple disk layout with up to four partitions.
Figure 5.1 shows such a simple disk with two partitions and the MBR in the first sector.

Figure 5.1. A basic DOS disk with two partitions and the MBR.

— Partition #1 Partition #2

Extended Partition Concepts

The MBR is a simple method of describing up to four partitions. However, many systems
require more partitions than that. For example, consider a 12GB disk that the user wants to
divide into six 2GB partitions because he is using multiple operating systems. We cannot
describe the six partitions by using the four partition table entries.

The solution to this design problem is what makes DOS partitions so complex. The basic
theory behind the solution is to use one, two, or three of the entries in the MBR for normal
partitions and then create an "extended partition" that will fill up the remainder of the disk.
Before we move on, some definitions may be helpful. A primary file system partition is a
partition whose entry is in the MBR and the partition contains a file system or other
structured data. A primary extended partition is a partition whose entry is in the MBR, and
the partition contains additional partitions. We can see this in Figure 5.2, which has three
primary file system partitions and one primary extended partition.

Figure 5.2. A DOS disk with three primary file system partitions and one primary secondary
partition.

— 1 | |

Prirnary Primary Primary Primary
File System | File System | File System -
1 us 43 Extended Partition

67

To consider what goes inside a primary extended partition, you should basically forget about
everything we have discussed so far. In the MBR, we saw a central partition table that
described several partitions. Here we see a linked list of partitions. The basic theory is that we
are going to precede every file system partition with data that describe how big the file
system partition is and where we can find the next partition. All these partitions should be
located inside of the primary extended partition, which is why it must be as large as possible.

A secondary file system partition, also called a logical partition in Windows, is located inside
the primary extended partition bounds and contains a file system or other structured data.
Secondary file system partitions are equivalent to the partitions that are described in the MBR
except that they are in an extended partition. A secondary extended partition is a partition
that contains a partition table and a secondary file system partition. The secondary extended
partitions wrap around the secondary file system partitions and describe where the secondary
file system partition is located and where the next secondary extended partition is located.

Figure 5.3 shows an example of how secondary partitions work. Secondary Extended #1
contains a partition table that points to Secondary File System #1 and Secondary Extended
#2. Secondary Extended #2 contains a partition table that points to Secondary File System #2.
It also could point to another secondary extended partition, and this process could repeat until
we are out of disk space.

Figure 5.3. The basic theory and layout behind the secondary extended and file system
partitions.

Secondary
Extended
#1

—

Secondary Secondary
File System Extended
[| #1 #e
| :
| Secondary
File System
[#2

Putting the Concepts Together

Now let's put these two partitioning methods together. If we need one to four partitions, we
can create them using only the MBR, and we do not need to worry about extended partitions.
If we want more than four partitions, we must create up to three primary file system partitions
in the MBR and then allocate the rest of the disk to a primary extended partition.

Inside the primary extended partition, we use the linked-list partitioning method. We can
optimize the linked-list design that I described in the last section by not making the initial
secondary extended partition. Instead, put a partition table at the beginning of the primary
extended partition. It can describe one secondary file system and one secondary extended
partition.

68

Consider an example. We have a 12GB disk and we want to break it up into six 2GB
partitions. We create the first three 2GB partitions using the first three entries in the MBR,
and the remaining 6GB is allocated to a primary extended partition, which spans from 6GB to
12GB.

We need to allocate three more partitions using the linked-list method. We use the partition
table in the first sector of the primary extended partition, make a secondary file system
partition that spans from 6GB to 8GB, and make a secondary extended partition that spans
from 8GB to 10GB. A partition table is inside the secondary extended partition, and it has
entries for a secondary file system partition that spans from 8GB to 10GB and an entry for
another secondary extended partition that spans from 10GB to 12GB. A partition table is
inside the last secondary extended partition, and it has an entry for the final file system
partition, which spans from 10GB to 12GB. We see this in Figure 5.4.
Figure 5.4. The layout required for a disk with six file system partitions.

| '} 2GB l 4GB Y _6GB SGB i 1{!';38 12GB
| I
| Primary Primary Primary | Prima |
| File System | File System | File System Extended Pg Hition
|| #1 #2 #3

,

Secondary Secondary i
- File System Extended :
#1 #1 '
1
1
T T]
i]
I } i -‘r 1
| Secondary Secondary
| File Systemn Extended
#e #e
I i
. ¥ i
| Secondary
- File System
#3

As I have described it and as most documents claim, an extended partition table should have,
at most, one entry for a secondary file system partition and one entry for a secondary
extended partition. In practice, most operating systems will not generate an error if more than
two entries are being used. In fact, in July 2003, I released a 160 MB disk image [Carrier
2003] with six 25 MB DOS partitions to the CFTT Yahoo! Groups list
(http://groups.yahoo.com/group/cftt/). The image had a primary extended partition
table with two secondary file system partition entries and one secondary extended partition
entry. Some forensic tools properly handled the third partition entry, while others ignored it
or claimed that the 25 MB partition was a 1 TB partition. This example shows how
something as common as DOS partitions can cause problems with analysis tools.

69

Extended partitions have special types that are used in their partition table entries. To make
this confusing partition scheme even more confusing, there is more than one type of extended
partition, and they do not differentiate between primary and secondary extended partitions.
The common types of extended partitions are "DOS Extended," "Windows 95 Extended," and
"Linux Extended."

Boot Code

The boot code in a DOS disk exists in the first 446 bytes of the first 512-byte sector, which is
the MBR. The end of the sector contains the partition table. The standard Microsoft boot code
processes the partition table in the MBR and identifies which partition has the bootable flag
set. When it finds such a partition, it looks in the first sector of the partition and executes the
code found there. The code in the start of the partition will be operating system-specific. Boot
sector viruses insert themselves into the first 446 bytes of the MBR so that they are executed
every time the computer is booted.

It is becoming much more common to have multiple operating systems on a computer. There
are two ways to handle this. Windows handles this by having code in the bootable partition
that allows a user to select which OS to load. In other words, the boot code in the MBR
executes first and loads the Windows bootable code. The Windows bootable code allows a
user to choose a different partition from which to boot.

The other method is to change the code in the MBR. The new MBR code presents the user
with a list of options, and the user chooses which partition to boot from. This typically
requires more code and uses some of the unused sectors that exist before the first partition
starts.

Summary

The DOS partition system is complex because each partition table has only four entries in it.
Other partition systems discussed later in this chapter and the next have larger partition tables
and are, therefore, less complex. The following high-level steps are necessary to list the
layout information of a disk with DOS partitions:

1. The Master Boot Record is read from the first sector of the disk, and the four partition
table entries are identified and processed.

2. When an entry for an extended partition is processed, the first sector of the extended
partition is read and its partition table entries are processed in the same manner as the
MBR.

3. When an entry for a non-extended partition is processed, its starting sector and size
are displayed. The ending sector address can be determined by adding the starting
sector address and the size together and subtracting one.

Data Structures

The previous section reviewed the DOS partition system. This section provides a detailed
discussion of the structures that make the system work. If you are not interested in data
structures, you can skip this; however, there is an interesting example of extended partitions.
This section is organized into three subsections describing the MBR, extended partitions, and
show tool output from an example image.

MBR Data Structure

DOS Partition tables exist in the MBR and in the first sector of each extended partition.
Conveniently, they all use the same 512-byte structure. The first 446 bytes are reserved for
assembly boot code. Code needs to exist in the MBR because it is used when the computer is
started, but the extended partitions do not need it and could contain hidden data. The MBR
layout in tabular form can be found in Table 5.1.

70

Table 5.1. Data structures for the DOS partition table.

Byte Range Description Essential
0-445 Boot Code No
446461 Partition Table Entry #1 (see Table 5.2) Yes
462477 Partition Table Entry #2 (see Table 5.2) Yes
478-493 Partition Table Entry #3 (see Table 5.2) Yes
494-509 Partition Table Entry #4 (see Table 5.2) Yes
510-511 Signature value (0xAA55) No

The partition table has four 16-byte entries. The entries' structures are given in Table 5.2.
Note that the CHS addresses are essential for older systems that rely on them, but are not
essential on newer systems.

Table 5.2. Data structure for DOS partition entries.

Byte Range Description Essential
0-0 Bootable Flag No

1-3 Starting CHS Address Yes

4-4 Partition Type (see Table 5.3) No

5-7 Ending CHS Address Yes

8-11 Starting LBA Address Yes
12-15 Size in Sectors Yes

The bootable flag is not always necessary. The standard boot code for a system with only one
OS looks for an entry whose flag is set to 0x80. For example, if a system has Microsoft
Windows on it and the disk is partitioned into two partitions, the partition with the operating
system on it (C:\windows, for example) will have the bootable flag set. On the other hand, if
the boot code prompts the user to choose which partition to boot from, the bootable flag is not
necessary. Although, some boot programs will set the bootable flag after the user chooses to
boot that partition.

The starting and ending CHS addresses have an 8-bit head value, a 6-bit sector value, and a
10-bit cylinder value. In theory, either the CHS addresses or the LBA addresses need to be set
for each partition, but not both. It is up to the OS and the code that is used to boot the system
to determine which values need to be set. For example, Windows 98 and ME use the CHS
addresses for partitions in the first 7.8GB of the disk, but Windows 2000 and beyond always
ignore the CHS addresses [Microsoft 2003]. Some partitioning tools set both when possible
for backward compatibility. The usage of these fields is application-dependent.

The partition type field identifies the file system type that should be in the partition. A list of
common partition types is given in Table 5.3. A more detailed list of partition types can be
found in Partition types [Brouwer 2004].

Table 5.3. Some of the type values for DOS partitions.
Type Description

0x00 Empty

0x01 FAT12, CHS

0x04 FAT16, 16-32 MB, CHS

0x05 Microsoft Extended, CHS

0x06 FAT16, 32 MB-2GB, CHS

71

0x07 NTFS

0x0b FAT32, CHS

0x0c FAT32, LBA

0x0e FAT16, 32 MB-2GB, LBA
0x0f Microsoft Extended, LBA
0x11 Hidden FAT12, CHS

0x14 Hidden FAT16, 16-32 MB, CHS
0x16 Hidden FAT16, 32 MB-2GB, CHS
Ox1b Hidden FAT32, CHS

Ox1c Hidden FAT32, LBA

Ox1e Hidden FAT16, 32 MB-2GB, LBA
0x42 Microsoft MBR. Dynamic Disk
0x82 Solaris x86

0x82 Linux Swap

0x83 Linux

0x84 Hibernation

0x85 Linux Extended

0x86 NTFS Volume Set

0x87 NTFS Volume Set

0xa0 Hibernation

Oxal Hibernation

0xa5 FreeBSD

Oxa6 OpenBSD

0xa8 Mac OSX

0xa9 NetBSD

Oxab Mac OSX Boot

Oxb7 BSDI

0xb8 BSDI swap

Oxee EFI GPT Disk

Oxef EFI System Partition

Oxfo Vmware File System

Oxfc Vmware swap

Notice how many partition types exist for Microsoft file systems in the 0x01 to 0xOf range.
The reason is that Microsoft operating systems use the partition type to determine how to
read and write data from the partition. Recall from Chapter 2, "Computer Foundations," that
Windows can use either INT 13h or the extended INT 13h BIOS routines. The extended INT
13h routines are needed for accessing disks larger than 8.1GB and use LBA addressing
instead of CHS. Therefore, the FAT16 0x04 and OxOE types are the same except that the OS
should use the extended routines for the latter type. Similarly, 0xOB and 0xOC types are the
normal and extended versions of FAT32 and 0x05, and OxOF types are the normal and
extended for extended partitions [Microsoft 2004b]. The "hidden" versions of these partition
types have a 1 instead of a O in the upper nibble, and various tools create them.

72

To illustrate the MBR and the partition tables, we will extract the sectors from an actual
system and parse the structures by hand. The system is a dual boot Microsoft Windows and
Linux system, and it has eight file system partitions.

The first example is from the first sector of the disk. This output is from the xxd tool in
Linux, but similar data can be found using a hex editor in Windows or UNIX. The following
command was used in Linux:

dd if=disk3.dd bs=512 skip=0 count=1 | xxd

The left column is the byte offset in decimal, the middle eight columns are the data in
hexadecimal format, and the final column is the data translated into ASCII. The data are from
an [A32-based system, which is little-endian and stores numbers with the least significant
byte at the lowest address. Therefore, the order of the bytes in the middle columns may need
to be reversed. The MBR of the disk is as follows:

dd if=disk3.dd bs=512 skip=0 count=1 | =xxd
0000000: eb48 9010 8ed0 bc00 bOb8 0000 8ed8 8ecO .H..............

[REMOVED]
0000384: 0048 6172 6420 4469 736b 0052 6561 6400 .Hard Disk.Read.
0000400: 2045 7272 6£f72 00bb 0100 b40e cdl0 ac3c Error......... <

0000416: 0075 £4c3 0000 0000 0000 0000 0000 0000 .u..............
0000432: 0000 0000 0000 0000 0000 0000 0000 0001i.iieinnnn.n.

0000448: 0100 07fe 3f7f 3f00 0000 4160 1£f00 80002.2...A%....
0000464: 0180 83fe 3f8c 8060 1£f00 cd2f 0300 00002.. .../....
0000480: 018d 83fe 3fcc 4d90 2200 40b0 0£f00 0000?.M.".@.....
0000496: 0lcd 05fe ffff 8d40 3200 79eb 9604 55aa @Q2.y...U.

The first 446 bytes contain boot code. The 0xAASS signature value can be seen in the last
two bytes of the sector (although they are reversed in the output because of the endian
ordering). The partition table is in bold and starts with the 0x0001 at offset 446. Each line in
the output has 16 bytes, and each table entry is 16 bytes. Therefore, the second entry begins
one line below the first entry with 0x8000. Using the structure previously outlined, the four
partition table entries are shown in Table 5.4. The values are shown in hexadecimal format
with the decimal value in parenthesis of important values.

Table 5.4. The contents of the primary partition table in the example disk image.

Flag Type Starting Sector Size
1 0x00 0x07 0x0000003f (63) 0x001f6041 (2,056,257)
2 0x80 0x83 0x001f6080 (2,056,320) 0x00032fcd (208,845)

3 0x00 0x83 0x0022904d (2,265,165) 0x000fb040 (1,028,160)
4 0x00 0x05 0x0032408d (3,293,325) 0x0496eb79 (76,999,545)

Using Table 5.4 and the partition type field in Table 5.3, we can guess what type of data are
in each partition. The first partition should be for an NTFS file system (type 0x07), the
second and third partitions should be for Linux file systems (0x83), and the fourth partition is
an extended partition (0x05). The second entry is set to be bootable. The extended partition
should have been expected because it was previously mentioned that there would be a total of
eight partitions. The disk layout from this partition table is shown in Figure 5.5.

73

Figure 5.5. Disk layout after processing the first partition table in example (not to scale).

[=2]
8 @ 0 S
e . & o
o Ly Y [=2]
5] [Ts] Sf; ol
< ™ &
o o o 3

o
NTFS | Linux | Linux Primary Extended

Extended Partition Data Structures

Recall that the extended partitions use the same structure in the first sector as the MBR does,
but they use it to make a linked list. The partition table entries are slightly different, though,
because the starting sector addresses are relative to other places on the disk besides the
beginning of the disk. Furthermore, the starting sector of a secondary file system partition is
relative to a different place than the starting sector of a secondary extended partition.

The starting address for a secondary file system entry is relative to the current partition table.
This is intuitive because the secondary extended partitions work as wrappers around the file
system partitions; therefore, they have the starting address relative to themselves. On the
other hand, the starting address for a secondary extended partition entry is relative to the
primary extended partition.

Let's step through the example shown in Figure 5.6. It has a primary extended partition that
starts in sector 1,000 with a length of 11,000 sectors. Its partition table has two entries. The
first is for a FAT file system with a starting sector of 63, which is added to the sector of the
current partition table to get 1,063. The second entry is for an extended partition and its
starting sector is 4,000. That is added to the start of the primary extended partition, which is
sector 1,000, and we get sector 5,000.

Now let's jump ahead to that secondary extended partition (in sector 5,000). The first
partition table entry is for an NTFES file system, and its starting value is 63, which is added to
the address of the current partition table and to get sector 5,063. The second entry is for an
extended partition, and its starting value is 6,500, which is added to the sector of the primary
extended partition and to get sector 7,500.

We'll do one more round to make sure it is clear. The next extended partition starts in sector
7,500. The first entry is for an EXT3FS file system with a starting value of 63, which is
added to 7,500 to get sector 7,563. The second entry is for a secondary extended partition,
and its starting value is 9,000, which is added to 1,000 to get sector 10,000.

74

Figure 5.6. Disk with three secondary extended partitions. Note that the starting location of the
secondary extended partitions is relative to the start of the primary extended partition, sector

1000.
S 2 2 2 g 2 g8 8
=2 S 2 o 0 S o o
TT W oW ~ o~ - - -
FAT NTFS EXTAFS FAT
Primary File System)
Partitions Primary Extended
Start | Length | Type Secong
- econdary :
Lo e TAT S FAT Extended ;
2| 4,000 | 2500 Extend 5
Start | Length Type
1| 63 | 2437 | NTFS |« NTFS 5;;22323
2| 6,500 | 2,500 Extend

Return to the actual system

Start | Length Type S g
< econdary
1 63 2,437 | EXT3FS | EXTA3FS Extended
2| 8,000 | 2,000 Extend
Start | Length Type
1| 63 1,937 FAT |= FAT
2 0 0

that we parsed by hand. The following are the contents of the first

sector of the primary extended partition, which is located in sector 3,293,325:

dd if=disk3.dd bs=512
[REMOVED]

0000432: 0000 0000 O0OOO
0000448: 0lcd 83fe 7fcb
0000464: 41cc 05fe bf0b
0000480: 0000 0000 O0OOO
0000496: 0000 0000 0OOO

skip=3293325 count=1 | xxd

0000 0000 0000 0000 0001vivvnnnn..

3£f00 0000 0082 3e00 0000, >, ..
3f82 3e00 40b0 0£00 0000 A..... ?2.>.Q.....
0000 0000 0000 0000 0000
0000 0000 0000 0000 55aa U.

The four partition table entries are highlighted, and we see that the final two entries are

empty. The first two parti

tion table entries are parsed into the contents of Table 5.5 (the

partition numbering is continued from Table 5.4):

75

Table 5.5. The contents of the primary extended partition table in the example disk image.

Flag Type Starting Sector Size
5 0x00 0x83 0x0000003f (63) 0x003e8200 (4,096,572)
6 0x00 0x05 0x003e823f (4,096,575) 0x000fb040 (1,028,160)

Entry #5 has a type for a Linux file system (0x83), so it is a secondary file system partition,
and its starting sector is relative to the start of the current extended partition (sector
3,293,325).

3,293,325 + 63 = 3,293,388

Entry #6 has a type for a DOS Extended partition, so its starting sector is relative to the start
of the primary extended partition, which is the current partition.

3,293,325 + 4,096,575 = 7,389,900

The disk layout, as we know it, can be found in Figure 5.7. Before we continue, note the sizes
of the two partitions. In the MBR, the primary extended partition had a size of 76,999,545
sectors. In this table, the size of the next secondary extended partition is only 1,028,160
sectors. Recall that the primary extended partition has a size of all the secondary file systems
and secondary extended partitions, but the secondary extended partitions have a size that is
equal to the size of only the next secondary file system partition plus the size needed for a
partition table.

Figure 5.7. Disk layout after processing the second partition table (not to scale).

[op]
L] [Ty] o =2 (=] w
od w ol 3 w =]
o« ~ © 4 < Y
[7s] Ty o o o o
[Ty] w L=} s8] -— od
(=] Y o (5] ~ o
od od Lo = =0} L=]
@
NTFS | Linux | Linux Primary Extended
]]
| | |
Linux Ext

We can continue the example by examining the next secondary extended partition, which is
located in sector 7,389,900. Its contents are shown in Table 5.6.

Table 5.6. The contents of the first secondary extended partition table in the example disk

image.
Flag Type Starting Sector Size
7 0x00 0x82 0x0000003f (63) 0x000fb001 (1,028,097)
8 0x00 0x05 0x004e327f (5,124,735) 0x000fb040 (1,028,160)

76

Entry #7 is for a Linux swap partition, so it is a secondary file system, and its starting sector
address is relative to the current extended partition, which is sector 7,389,900.

7,389,900 + 63 = 7,389,963

Entry #8 is for a DOS Extended file system, so its starting sector address is relative to the
primary extended partition, which is sector 3,293,325.

3,293,325 + 5,124,735 = 8,418,060

The disk layout with the information from this partition table can be found in Figure 5.8. The

full contents of the example partition table are given in the next section when we look at tools
that print the partition table contents.

Figure 5.8. Disk layout after processing the third partition table (not to scale).

h
8 8 g g 8 § 2
Lys — s] o o
fe] Ty} o] o o fe] =]
L) [{e] o o0 — 3 o
= o ol 0 =< .
o od of] P~] =1 3
[=
MTFS | Linux | Linux Primary Extended
T T T
I 1 I I
|
Linux Ext "
]
]
I I]
Swap | Ext

Example Image Tool Output

Now that the internal structure of the partition system is known, we will show how some of
the analysis tools process them. For those who actually enjoy parsing the structure by hand
and never use a tool, you can skip this section. Two Linux tools will be shown here. Other
Windows tools, such as full forensic analysis tools and hex editors, also perform this
function.

The fdisk command comes with Linux and is different from the tool with the same name
that comes with Windows. fdisk can be run on a Linux device or a disk image file generated
by dd. The -1 flag forces it to list the partitions instead of going into interactive mode where
the partitions could also be edited. The —u flag forces the output to be in sectors instead of
cylinders. The output of the DOS Partitioned disk that we parsed by hand is as follows:

fdisk -1lu disk3.dd
Disk disk3.dd: 255 heads, 63 sectors, 0 cylinders
Units = sectors of 1 * 512 bytes

Device Boot Start End Blocks Id System
disk3.ddl 63 2056319 1028128+ 7 HPFS/NTFS

77

disk3.dd2 * 2056320 2265164 104422+ 83 Linux
disk3.dd3 2265165 3293324 514080 83 Linux
disk3.dd4 3293325 80292869 38499772+ 5 Extended
disk3.dd5 3293388 7389899 2048256 83 Linux
disk3.ddé 7389963 8418059 514048+ 82 Linux swap
disk3.dd7 8418123 9446219 514048+ 83 Linux
disk3.dds8 9446283 17639369 4096543+ 7 HPFS/NTFS
disk3.dd9 17639433 48371714 15366141 83 Linux

We can observe several things from this output. The output lists only the primary extended
partition (disk3.dd4). The secondary extended partition in which the Linux swap partition is
located is not displayed. This is acceptable for most circumstances because only the primary
and secondary file system partitions are needed for an investigation, but it should be noted
that you are not seeing all partition table entries.

The mm1s tool in The Sleuth Kit provides slightly different information. Sectors that are
unused by a partition are marked as such, the location of the partition tables is marked, and
the extended partition locations are noted. Using the same disk as we used for the first fdisk
example, the following is seen:

mmls -t dos disk3.dd
Units are in 512-byte sectors
Slot Start End Length Description
00: ————- 0000000000 0000000000 0000000001 Table #0O
01l: ————- 0000000001 0000000062 0000000062 Unallocated
02: 00:00 0000000063 0002056319 0002056257 NTFS (0x07)
03: 00:01 0002056320 0002265164 0000208845 Linux (0x83)
04: 00:02 0002265165 0003293324 0001028160 Linux (0x83)
05: 00:03 0003293325 0080292869 0076999545 DOS Extended (0x05)
06: ————- 0003293325 0003293325 0000000001 Table #1
07: ————- 0003293326 0003293387 0000000062 Unallocated
08: 01:00 0003293388 0007389899 0004096512 Linux (0x83)
09: 01:01 0007389900 0008418059 0001028160 DOS Extended (0x05)
10: —-———- 0007389900 0007389900 0000000001 Table #2
11: ————- 0007389901 0007389962 0000000062 Unallocated
12: 02:00 0007389963 0008418059 0001028097 Linux Swap (0x82)
13: 02:01 0008418060 0009446219 0001028160 DOS Extended (0x05)
14: ——— 0008418060 0008418060 0000000001 Table #3
15: —-———- 0008418061 0008418122 0000000062 Unallocated
16: 03:00 0008418123 0009446219 0001028097 Linux (0x83)
17: 03:01 0009446220 0017639369 0008193150 DOS Extended (0x05)
18: ————- 0009446220 0009446220 0000000001 Table #4
19: —— 0009446221 0009446282 0000000062 Unallocated
20: 04:00 0009446283 0017639369 0008193087 NTFS (0x07)
21: 04:01 0017639370 0048371714 0030732345 DOS Extended (0x05)
22: ————- 0017639370 0017639370 0000000001 Table #5
23: ————- 0017639371 0017639432 0000000062 Unallocated
24: 05:00 0017639433 0048371714 0030732282 Linux (0x83)

The 'Unallocated' entries are for the space in between partitions and for the space between the
end of the partition table and the beginning of the first partition. The output of mm1s gives
both the ending address and the size, so it can be easily used to extract the partitions with dd.

The output of mm1s is sorted by the starting sector of the partition, so the first column is only
a counter for each entry and has no correlation to the partition table entry. The second column
shows what partition table the partition was found in and which entry in the table. The first
number shows which table, O being the primary table and 1 being the primary extended table,
and the second number shows which entry in the table. The sorted output helps to identify
sectors that are not partitioned. For example, consider this image:

mmls -t dos diskl.dd
Units are in 512-byte sectors

78

Slot Start End Length Description

00: —-———- 0000000000 0000000000 0000000001 Table #0

01: ————- 0000000001 0000000062 0000000062 Unallocated

02: 00:00 0000000063 0001028159 0001028097 Win95 FAT32 (0xOB)
03: —-———- 0001028160 0002570399 0001542240 Unallocated

04: 00:03 0002570400 0004209029 0001638630 OpenBSD (0xA6)
05: 00:01 0004209030 0006265349 0002056320 NTFS (0x07)

In this output, we see that the NTFS partition is in a slot that is before the OpenBSD partition,
but the NTFS partition starts after the OpenBSD partition. We can also see that there is no
entry '00:02,' and the 1,542,240 sectors in between the FAT and OpenBSD partitions are also
marked as unallocated.

Analysis Considerations

This section includes a few characteristics that can be taken into consideration when
analyzing a DOS-based disk. The partition table and boot code require only one sector, yet 63
are typically allocated for both the MBR and extended partitions because the partitions start
on a cylinder boundary. Therefore, sector O of the extended partition or MBR is used for code
and the partition table, but sectors 1-62 may not be used. The unused area can be used by
additional boot code, but it also may contain data from a previous installation, zeros, or
hidden data. Windows XP does not wipe the data in the unused sectors when it partitions a
disk.

As most partitions start at sector 63 (which you can use to your advantage if you are
desperate to recover the contents of the first partition), the partition table is missing and the
tools discussed in Chapter 4, "Volume Analysis," do not work. Try extracting data from
sector 63 onward. This method includes other partitions in the image; however, you may be
able to identify the actual size of the partition from file system data. The partition can be
extracted with dd as follows:

dd if=disk.dd bs=512 skip=63 of=part.dd

In theory, extended partitions should have only two entries: one secondary file system
partition and another secondary extended partition. Most partitioning tools follow this theory,
but it is possible to create a third entry by hand. Microsoft Windows XP and Red Hat 8.0
showed the "extra" partition when there were more than two in an extended partition,
although neither OS would allow you to create such a configuration. Test your analysis tools
to ensure that they are showing all of the partitions when this "invalid" configuration exists.

The value in the partition type field of the partition table is not always enforced. Windows
uses this field to identify which partitions it should try to mount, but users are given access to
all partitions in operating systems, such as Linux. Therefore, a user could put a FAT file
system in a partition whose type is for laptop hibernation. They would not be able to mount it
in Windows, but would in Linux.

Some versions of Windows only create one primary partition in the MBR and then rely on
extended partitions for the remaining partitions. In other words, they do not create three
primary partitions before creating an extended partition.

When parts of a partition table have become corrupt, it may be necessary to search for the
extended partition tables. To find the extended partitions, a search for OxAASS in the last two
bytes of a sector could be conducted. Note that this signature value exists at the same location
in the first sector of a NTFS and FAT file system, and the remainder of the sector must be
examined to determine if it is a partition table or a file system boot sector. If a sector is found
to be a boot sector of a file system, a partition table may exist 63 sectors prior to it.

79

Summary

DOS-based partitions are the most common for current computer investigations.
Unfortunately, they are also the most complex to understand because they were not originally
designed for the size of modern systems. Fortunately, tools exist to easily list the layout of the
disk and extract the used and unused space. Many UNIX systems that run on [A32-
compatible platforms use DOS partitions in addition to their own partition systems.
Therefore, every investigator needs a solid understanding of DOS partitions.

Apple Partitions

Systems running the Apple Macintosh operating system are not as common as those running
Microsoft Windows, but they have been increasing in popularity with the introduction of Mac
OS X, a UNIX-based operating system. The partitions that we will describe here can be
found in the latest Apple laptops and desktops running OS X, older systems that are running
Macintosh 9, and even the portable iPod devices that play MP3 audio. The partition map also
can be used in the disk image files that a Macintosh system uses to transmit files. The disk
image file is similar to a zip file in Windows or a tar file in Unix. The files in the disk image
are stored in a file system, and the file system may be in a partition.

The design of the partition system in an Apple system is a nice balance between the
complexity of DOS-based partitions and the limited number of partitions that we will see in
the BSD disk labels. The Apple partition can describe any number of partitions, and the data
structures are in consecutive sectors of the disk. This section will give an overview of the
Apple partitions, the details of the data structures, and discuss how to view the details.

General Overview

The Apple partitions are described in the partition map structure, which is located at the
beginning of the disk. The firmware contains the code that processes this structure, so the
map does not contain boot code like we saw in the DOS partition table. Each entry in the
partition map describes the starting sector of the partition, the size, the type, and the volume
name. The data structure also contains values about data inside of the partition, such as the
location of the data area and the location of any boot code.

The first entry in the partition map is typically an entry for itself, and it shows the maximum
size that the partition map can be. Apple creates partitions to store hardware drivers, so the
main disk for an Apple system has many partitions that contain drivers and other non-file
system content. Figure 5.9 shows an example layout of an Apple disk with three file system
partitions and the partition for the partition map.

Figure 5.9. An Apple disk with one partition map partition and three file system partitions.

l Y Y Y

Partition File System File System File System
Map Partition 1 Panrtition 2 Partition 3

We will later see that BSD systems have a different partition structure called the disk label.
Even though Mac OS X is based on a BSD kernel, it uses an Apple partition map and not a
disk label.

80

Data Structures

Now that we have examined the basic concepts of an Apple partition, we can look at the data
structures. As with other data structures in this book, they can be skipped if you are not
interested. This section also contains the output of some analysis tools using an example disk

image.

Partition Map Entry

The Apple partition map contains several 512-byte data structures, and each partition uses
one data structure. The partition map starts in the second sector of the disk and continues
until all partitions have been described. The partition data structures are laid out in
consecutive sectors, and each map entry has a value for the total number of partitions. The

512-byte data structure is shown in Table 5.7.

Table 5.7. Data structure for Apple partition entries.

Byte Range Description

0-1 Signature value (0x504D)

2-3 Reserved

4-7 Total Number of partitions

811 Starting sector of partition

12-15 Size of partition in sectors
1647 Name of partition in ASCII
48-79 Type of partition in ASCII

80-83 Starting sector of data area in partition
84-87 Size of data area in sectors
88-91 Status of partition (see table 5-8)
92-95 Starting sector of boot code
9699 Size of boot code in sectors
100-103 Address of boot loader code
104-107 Reserved

108—111 Boot code entry point

112-115 Reserved

116-119 Boot code checksum

120-135 Processor type

136-511 Reserved

Essential
No
No
Yes
Yes
Yes
No
No
No
No
No
No
No
No
No
No
No
No
No
No

The type of partition is given in ASCII and not as an integer as other partition schemes use.
The status values for each partition apply to both older A/UX systems and modern Macintosh

systems. A/UX is an older operating system from Apple. The status
values shown in Table 5.8 [Apple 1999].

value can have one of the

Table 5.8. Status value for Apple partitions.

Type Description

0x00000001 Entry is valid (A/UX only)

0x00000002 Entry is allocated (A/UX only)

0x00000004 Entry in use (A/UX only)

0x00000008 Entry contains boot information (A/UX only)

81

0x00000010 Partition is readable (A/UX only)

0x00000020 Partition is writable (Macintosh & A/UX)

0x00000040 Boot code is position independent (A/UX only)
0x00000100 Partition contains chain-compatible driver (Macintosh only)
0x00000200 Partition contains a real driver (Macintosh only)
0x00000400 Partition contains a chain driver (Macintosh only)
0x40000000 Automatically mount at startup (Macintosh only)
0x80000000 The startup partition (Macintosh only)

The data area fields are used for file systems that have a data area that does not start at the
beginning of the disk. The boot code fields are used to locate the boot code when the system
is starting.

To identify the partitions in an Apple disk, a tool (or person) reads the data structure from the
second sector. It is processed to learn the total number of partitions, and then the other
partition information from it is collected. The first entry is usually the entry for the partition
map itself. The next sector is then read, and the process continues until all partitions have
been read. Here are the contents of the first entry in the partition map:

dd if=mac-disk.dd bs=512 skip=1 | xxd

0000000: 504d 0000 0000 00Oa 0000 0001 0000 OO3f PM............. ?
0000016: 4170 706c 6500 0000 0000 0000 0000 0000 Apple...........
0000032: 0000 0000 0000 0000 0000 0000 0000 0000iiiiuunn.
0000048: 4170 706c 655f 7061 7274 6974 696f 6e5f Apple_partition_
0000064: 6d61 7000 0000 0000 0000 0O0OOO 0000 0000 map.............
0000080: 0000 0000 0000 003f 0000 00OOO 0000 0OOOO 2 e
0000096: 0000 0000 0000 0000 0000 0000 0000 0000c.ciue...
[REMOVED]

Apple computers use Motorola PowerPC processors and, therefore, store data in big-endian
ordering. As a result, we will not need to reverse the order of numbers like we did with DOS
partitions. We see the signature value of 0x504d in bytes O to 1 and the number of partitions
in bytes 4 to 7, which is 10 (0x0000000a). Bytes 8 to 11 show us that the first sector of the
disk is the starting sector for this partition and that its size is 63 sectors (0x3f). The name of
the partition is "Apple," and the type of partition is "Apple_partition_map." Bytes 88 to 91
show that no flags for this partition are set. Other entries in the partition map that are not for
the partition map itself have status values set.

Example Image Tool Output

You can view an Apple partition map with mm1s in The Sleuth Kit. The fdisk command in
Linux will not show the contents of a partition map. Here are the results from running mm1s
on a 20GB iBook laptop:

mmls -t mac mac-disk.dd
MAC Partition Map
Units are in 512-byte sectors

Slot Start End Length Description
00: —-———- 0000000000 0000000000 0000000001 Unallocated
01: 00 0000000001 0000000063 0000000063 Apple_partition_map
02: ————- 0000000001 0000000010 0000000010 Table
03: —-———- 0000000011 0000000063 0000000053 Unallocated
04: 01 0000000064 0000000117 0000000054 Apple Driver43
05: 02 0000000118 0000000191 0000000074 Apple Driver43
06: 03 0000000192 0000000245 0000000054 Apple Driver ATA
07: 04 0000000246 0000000319 0000000074 Apple Driver ATA
08: 05 0000000320 0000000519 0000000200 Apple FWDriver

82

09: 06 0000000520 0000001031 0000000512 Apple Driver IOKit
10: 07 0000001032 0000001543 0000000512 Apple_Patches

11: 08 0000001544 0039070059 0039068516 Apple_ HFS

12: 09 0039070060 0039070079 0000000020 Apple_Free

In this output, the entries are sorted by starting sector, and the second column shows in which
entry in the partition map the partition was described. In this case, the entries were already in
sorted order. We can see in entry 12 that Apple reports the sectors that are not currently
allocated. Entries 0, 2, and 3 were added by mm1s to show what space the partition map is
using and which sectors are free. The drivers listed here are used by the system when it is
booting.

An alternative tool that can be used on a raw disk image is the pdisk tool with the -dump flag
on OS X:

pdisk mac-disk.dd -dump
mac-disk.dd map block size=512

#: type name length base (size)
1: Apple partition map Apple 63 @ 1

2: Apple_Driver43*Macintosh 54 Q@ 64

3: Apple_Driver43*Macintosh 74 @ 118

4: Apple Driver ATA*Macintosh 54 @ 192

5: Apple_Driver ATA*Macintosh 74 @ 246

6: Apple_FWDriver Macintosh 200 @ 320

7: Apple_Driver_ IOKit Macintosh 512 @ 520

8: Apple_Patches Patch Partition 512 @ 1032

9: Apple_ HFS untitled 39068516 (@ 1544 (18.6G)
10: Apple_Free 0+@ 39070060

Device block size=512, Number of Blocks=10053
DeviceType=0x0, DeviceId=0x0

Drivers-—

1: @ 64 for 23, type=0x1

2: Q@ 118 for 36, type=0xffff

3: @ 192 for 21, type=0x701

4: @ 246 for 34, type=0xf8ff

As was mentioned in the Introduction, Apple disk image files (which are different from
forensic disk image files) also can contain a partition map. A disk image file is an archive file
that can save several individual files. It is similar to a zip file in Windows or a tar file in
Unix. The disk image file can contain a single partition with a file system, or it can contain
only a file system and no partitions. The layout of a test disk image file (files with an
extension of .dmg) has the following layout:

mmls -t mac test.dmg

MAC Partition Map
Units are in 512-byte sectors

Slot Start End Length Description
00: ————- 0000000000 0000000000 0000000001 Unallocated
01: 00 0000000001 0000000063 0000000063 Apple_partition_map
02: ————- 0000000001 0000000003 0000000003 Table
03: ————- 0000000004 0000000063 0000000060 Unallocated

04: 01 0000000064 0000020467 0000020404 Apple_ HFS
05: 02 0000020468 0000020479 0000000012 Apple_Free

Analysis Considerations

The only unique characteristic of Apple partitions is that there are several unused fields in the
data structure that could be used to hide small amounts of data. Also data could be hidden in
the sectors between the last partition data structure and the end of the space allocated to the

83

partition map. As with any partitioning scheme, anything could be in the partitions that have
an official looking name or that claim to have a given type.

Summary

The Apple partition map is a fairly simple structure and is easy to understand. The data
structures are all located in one place, and the maximum number of partitions is based on
how the disk was originally partitioned. The mm1s tool allows us to easily identify where the
partitions are located if we are using a non-Apple system, and the pdisk tool can be used on
an OS X system.

Removable Media

Most removable media also have partitions, but they use the same structures that hard disks
use. The exception to this rule are floppy disks that are formatted for FAT12 in a Windows or
UNIX system. They do not have partition tables, and each entire disk is treated like a single
partition. If you image a floppy disk, you can directly analyze the image as a file system.
Some of the small USB storage tokens (sometimes called 'thumb drives') do not have
partitions and contain one file system, but some of them do have partitions.

Larger removable media, such as Iomega ZIP disks, do have partition tables. The partition
table on a ZIP disk will depend on whether it has been formatted for a Mac or a PC. A PC-
formatted disk will have a DOS-based partition table and by default will only have one
partition in the fourth slot.

Flash cards, which are commonly used in digital cameras, also typically have a partition
table. Many flash cards have a FAT file system and can be analyzed using normal
investigation tools. Here is DOS-based partition table from a 128MB flash card:

mmls -t dos camera.dd
DOS Partition Table
Units are in 512-byte sectors

Slot Start End Length Description
00: ————- 0000000000 0000000000 0000000001 Primary Table (#0)
01: —-———- 0000000001 0000000031 0000000031 Unallocated

02: 00:00 0000000032 0000251647 0000251616 DOS FAT16 (0x06)
Putting flash cards in a USB or Firewire reader and using dd in Linux can easily image them.

CD-ROMs are more complex because there exist many possible variations. Most CDs use the
ISO 9660 format so that multiple operating systems can read the contents of the CD. The ISO
9660 naming requirements are strict, and there are extensions to ISO 9660, such as Joliet and
Rock Ridge, which are more flexible. CDs are complex to describe because one CD may
have data in a basic ISO 9660 format and in a Joliet format. If a CD is also an Apple hybrid
disc, the data could also be in an Apple HFS+ format. The actual content of the files is only
saved once, but the data are pointed to by several locations.

Recordable CDs, or CD-Rs, have a notion of a session. A CD-R can have one or more
sessions on it, and the purpose of the sessions is that you can continue to add data to CD-R
more than once. A new session is made each time data are burned to the CD-R. Depending on
the operating system in which the CD is used, each session may show up as though it was a
partition. For example, I used an Apple OS X application to create a CD with three sessions.
When the CD was used in an OS X system, all three of the sessions were mounted as file
systems. When the CD was used in a Linux system, the last session was the default session to
be mounted, but the other two could be mounted by specifying them in the mount command.
The readcd tool (http://freshmeat.net/projects/cdrecord/) can be used to determine
the number of sessions on a CD. When the CD was used in a Microsoft Windows XP system,
the system said it was invalid, although Smart Project's ISO Buster program

84

(http://www.isobuster.com) in Windows could see all three sessions. Different results
may occur if the multiple session CD was created from within Windows. It is important with
CD-Rs to use a specialized CD analysis tool to view the contents of all sessions and not rely
on the default behavior of your analysis platform.

Some CDs also contain the partition systems of the native operating system. For example, a
hybrid CD is one that is in an ISO format and an Apple format. Inside the session are an
Apple partition map and HFS+ file system. Standard Apple investigation techniques can be
applied to these disks. For example, here is the result of running mm1s on hybrid disk:

mmls -t mac cd-slice.dd
MAC Partition Map
Units are in 512-byte sectors

Slot Start End Length Description
00: ————- 0000000000 0000000000 0000000001 Unallocated
01: 00 0000000001 0000000002 0000000002 Apple_partition_map
02: ————- 0000000001 0000000002 0000000002 Table
03: —-———- 0000000003 0000000103 0000000101 Unallocated
04: 01 0000000104 0000762559 0000762456 Apple_ HFS

Many bootable CDs also have a native partition system. Sparc Solaris bootable CDs have a
Volume Table of Contents structure in the ISO volume, and Intel bootable CDs can have a
DOS-based partition table at the beginning of the CD. These structures are used after the
operating system has been booted from the CD and the code required to boot the system is in
the ISO format.

Bibliography
Agile Risk Management. "Linux Forensics—Week 1 (Multiple Session CDRs)." March 19,
2004. nttp://www.agilerm.net/linuxl.html.

Apple. "File Manager Reference." March 1, 2004.

http://developer.apple.com/documentation/Carbon/Reference/File_Manager/inde
x.html.

Apple. "Inside Macintosh: Devices." July 3, 1996.
http://developer.apple.com/documentation/mac/Devices/Devices—2.html.
Brouwer, Andries. "Minimal Partition Table Specification." September 16, 1999.
http://www.win.tue.nl/~aeb/partitions/partition_tables.html.

Brouwer, Andries. "Partition Types." December 12, 2004.
http://www.win.tue.nl/~aeb/partitions/partition_types.html.

Carrier, Brian. "Extended Partition Test." Digital Forensic Tool Testing Images, July 2003.
http://dftt.sourceforge.net/testl/index.html.

Apple. "The Monster Disk Driver Technote." November 22, 1999.
http://developer.apple.com/technotes/tn/pdf/tnl1189.pdf.

CDRoller. Reading Data CD, n.d. http://www.cdroller.com/htm/readdata.html.
ECMA. "Volume and File Structure of CDROM for Information Interchange." ISO Spec,
September 1998. http://www.ecma-international.org/publications/files/ECMA-
ST/Ecma—-119.pdf.

Landis, Hale. "How it Works: Master Boot Record." May 6, 2002. http://www.ata-

atapi.com/hiwmbr.htm.

Landis, Hale. "How it Works: Partition Types." December 12, 2004. http://www.ata-
atapi.com/hiwtab.htm.

85

Microsoft. "Basic Disks and Volumes Technical Reference." Windows Server 2003 Technical
Reference, 2004. nttp://www.microsoft .com.

Microsoft. "Managing GPT Disks in Itanium-based Computers." Windows® XP Professional
Resource Kit Documentation, 2004a. http://www.microsoft .com.

Microsoft. "MS-DOS Partitioning Summary." Microsoft Knowledge Base Article 69912,
December 20, 2004b. http://support .microsoft.com/default.aspx?scid=kb; EN-
US; 69912.

Stevens, Curtis, and Stan Merkin. "El Torito: Bootable CD-ROM Format Specification 1.0."
January 25, 1999. http://www.phoenix.com/resources/specs-cdrom.pdf.

86

Chapter 6. Server-based Partitions

In the last chapter we saw how personal computers partition their storage volumes, and now
we are going to look at how some of the servers partition their volumes. The basic concepts
of this chapter and the previous chapter are identical. In fact, they are separated only because
I needed some way to break the content into medium-sized chapters, and this separation
seemed as good as anything else (even though DOS and Apple partitions are also used in
servers). In this chapter, we are going to look at FreeBSD, NetBSD, and OpenBSD partition
systems; Sun Solaris partition systems; and GPT partitions that are found in 64-bit Intel
Itanium systems.

BSD Partitions

It is becoming more common for computer investigations to encounter BSD UNIX servers,
such as FreeBSD (http://www.freebsd.org), OpenBSD (http://www.openbsd.org), and
NetBSD (http://www.netbsd.org). These systems use their own partitioning system, and
this section will show the details of its structures. It is more common to encounter a Linux
system during an investigation, but Linux uses only the DOS-based partitions and does not
have any special data structures.

Many BSD systems use IA32-based hardware (i.e., x86/i386), and they have been designed
such that they can exist on the same disk as Microsoft products. Therefore, they build on the
DOS partitions described in the previous chapter. A BSD system that runs on non-IA32
hardware likely does not use the DOS partitions, and they are not covered in this book.

An important concept to understand before we begin is that when an operating system is
running, it can choose to what partitions it will give the user access. As will be shown, the
FreeBSD operating system uses both the DOS and BSD partition systems, yet OpenBSD and
NetBSD use only the BSD partition system. A basic understanding of DOS partitions is
needed for this section.

General Overview

The BSD partition system is simpler than the DOS partitions but more limited than the Apple
partition map. There is only one sector that contains the needed data, and it is located inside a
DOS partition, as shown in Figure 6.1. It is inside a DOS partition so that the system can also
have Windows on the same disk and give the user a choice of which operating system to load.
The DOS partition table will have an entry for a partition with a FreeBSD, OpenBSD, or
NetBSD type—O0xa5, Oxa6, and 0xa9, respectively. The BSD partition will be one of the
primary DOS partitions.

Figure 6.1. A disk with two DOS partitions and three BSD partitions inside the FreeBSD-type
DOS partition.

I_ v v

-~ NTFS FreeBSD

87

If we wanted to be very strict with our terminology, we would say that the BSD partitions are
located inside a volume created by a DOS partition. As discussed in Chapter 4, "Volume
Analysis," this is an example where we are partitioning a volume that was created from a
partition.

The central data structure is the disk label. It is at least 276 bytes in size and is located in the
second sector of the BSD partition. For some non-IA32 systems, it may be in the first sector
and have an offset. FreeBSD, OpenBSD, and NetBSD use the same structure, but the
implementation is slightly different. Therefore, the general theory will be described here, and
specific details are given in later sections.

The disk label structure contains hardware specifications of the disk and a partition table for
eight or sixteen BSD partitions. Unlike Apple partitions, the partition table is a fixed size, and
unlike DOS partitions, there is only one partition table. Each entry in the BSD partition table
has the following fields:

e Starting sector of the BSD partition

e Size of the BSD partition

e Partition type

e Size of the UFS file system fragment

e Number of UFS file system fragments per block
e Number of cylinders per UFS Cylinder group

The starting sector address is given relative to the start of the disk, not the disk label or DOS
partition. The partition type field identifies the file system type that should be in the BSD
partition, such as UFS, swap space, FAT, and unused. The last three values are used only
when the partition contains a UFS file system. The UFS file system is described in Chapter
16, "UFS1 and UFS2 Concepts and Analysis," and Chapter 17, "UFS1 and UFS2 Data
Structures."

The basic theory of BSD partitions is simple. The one structure is read, and the list of
partitions can be easily processed. The challenge to an investigator, though, is to know to
what partitions the user had access. For example, if it was a dual boot system, the investigator
must know if the user had access to the Windows partition as well as the BSD partitions.
FreeBSD handles this differently from OpenBSD and NetBSD. I will discuss how each OS
uses the data in the disk label, even though this may be considered application-level analysis.

FreeBSD Overview

FreeBSD gives the user access to all DOS and BSD partitions on the disk. FreeBSD uses the
term "slice" to refer to each DOS partition and uses the term "partition" to refer to the BSD
partitions. Therefore, if a system has both Windows and FreeBSD installed on it, the user
would have access to the Windows slices when running FreeBSD.

The disk label structure in FreeBSD is used to organize the sectors in only the FreeBSD DOS
partition. This may sound obvious, but it is one of the ways in which the OpenBSD
implementation is different from the FreeBSD implementation. If we refer to Figure 6.2, the
disk label describes three partitions inside the FreeBSD type DOS partition but it does not
need to describe the NTFS type partition.

88

Figure 6.2. FreeBSD Disk with device names added.

DOs
Partitions

0, /:/ .

Partitions Slice 1 Slice 2
Idev/ad0si fdev/ad0s2 / | \

- / NTFS _ FreeBSD

Partition a Partition d Partition &
fdeviadls2a fdev/ad0s2d fdeviadOs2e

FreeBSD, like other UNIX flavors, assigns a special device file to each partition and slice.
The file is named according to its DOS partition number and its BSD partition number. The
base name for the primary ATA disk is /dev/ad0. Each slice, also called a DOS partition,
adds the letter 's' and the slice number to the base name. For example, the first slice is
/dev/ad0s1 and the second slice is /dev/ad0s2. Any slice that has a FreeBSD partition type
is processed for the disk label structure. The partitions in the slice are given letters based on
their entries in the disk label partition table. For example, if the second DOS partition was
FreeBSD, the first BSD partition would be /dev/ad0s2a, and the second BSD partition
would be /dev/ad0s2b. A second set of devices that does not include the slice number may
also be made for the BSD partitions. For example, /dev/ad0oa would be a shortcut to the
/dev/ad0s2a partition if the FreeBSD partition was DOS partition 2.

Some of the BSD partitions have special meaning. The 'a" partition is usually for the root
partition, which is where the boot code is located. The 'b' partition is usually for the swap
space of the system, the 'c' partition is usually for the entire slice, and the partitions starting at
'd" can be anything. The term 'usually' is used because that is how many of the BSD
partitioning tools will create the partitions, but any user can edit the disk label partition table
with a hex editor and modify the entries.

In summary, a FreeBSD system provides access to all DOS partitions and BSD partitions. An
investigator must analyze each of the DOS partitions and BSD partitions in the disk label to
fully analyze the system.

NetBSD and OpenBSD Overview

OpenBSD and NetBSD give a user access to only the entries in the BSD disk label structure.
Unlike the FreeBSD disk label, the OpenBSD and NetBSD disk label structure can describe
partitions anywhere on the disk. In other words, the disk label can describe partitions that are
outside the bounds of the DOS partition in which it is located. For the rest of this chapter, |
will refer to OpenBSD only, but I really mean both OpenBSD and NetBSD. The OpenBSD
code split from the NetBSD code years ago.

After the OpenBSD kernel is loaded, the DOS partitions are ignored. The DOS partitions are
only used to locate the start of the OpenBSD partition. Therefore, if a system has both
Windows and OpenBSD on it and users had access to a FAT partition from OpenBSD, the
FAT partition would be in both the DOS partition table and the BSD disk label. We can see
this in Figure 6.3 where we have the same DOS partitions as in Figure 6.2. In this case,
though, we need to have an additional entry in the disk label so that we can access the NTFS
type DOS partition.

89

Figure 6.3. A disk with two DOS partitions and an OpenBSD disk label that describes three
partitions inside the OpenBSD type DOS partition and the entire NTFS partition.

I_ v Y

| NTFS QOpenB3D

OpenBSD uses file names that are similar to the ones that FreeBSD uses for partition devices.
The base name for the primary ATA device is /dev/wd0. There is no notion of slices, and the
BSD partitions are named with letters. Therefore, the first BSD partition is /dev/wd0a and
the second is /dev/wd0ob. Like FreeBSD, the first partition is usually for the root partition and
the second partition is for swap space. The third partition, /dev/wd0c in our example, is the
device for the entire disk. Recall that the third partition for FreeBSD was for only the slice, or
DOS partition.

In summary, an OpenBSD system provides access to only the partitions described in the
OpenBSD disk label. An analysis of an OpenBSD system should focus on the partitions that
are listed in the disk label.

Boot Code

The boot code for a BSD system surrounds the disk label structure, which is located in sector
1 of the volume. Sector 0 of the volume contains boot code, and it is executed when the boot
code in the MBR finds the bootable BSD-type partition. Not all the boot code can fit in sector
0, so it jumps to sector 2, and boot code can exist until the file system data starts, which is
typically in sector 16.

Data Structures

This section will describe the BSD disk label data structure and parse example disk images
from FreeBSD and OpenBSD systems. The output from running analysis tools on the
example disk images is also given.

Disk Label Data Structure

We will now look at the details of the disk label data structure. If you are not interested in
this, you can skip ahead and look at the tool output when we list the contents of our example
disk images. I will first describe the BSD disk label structure and then examine the FreeBSD
and OpenBSD implementation details. The disk label has the layout given in Table 6.1. Note
that the data marked as non-essential could be essential for other disk operations, but are not
essential for determining the layout of the disk.

Table 6.1. Data structure for the BSD disk label.

Byte Range Description Essential
0-3 Signature value (0x82564557) No
4-5 Drive type No
6—7 Drive subtype No
8-23 Drive type name No
24-39 Pack identifier name No

90

40-43
44-47
48-51
52-55
56—-59
60-63
64—65
6667
68-71
7273
74-75
7677
78-79
80-83
84-87
88-91
92-111
112-131
132-135
136-137
138-139
140-143
144-147
148-163
164-179
180-195
196-211
212-227
228-243
244-259
260-275
276—291
292-307
308-323
324-339
340-355
356-371
372-387
388—-403
404-511

Size of a sector in bytes

Number of sectors per track

Number of tracks per cylinder
Number of cylinders per unit

Number of sectors per cylinder
Number of sectors per unit

Number of spare sectors per track
Number of spare sectors per cylinder
Number of alternate cylinders per unit
Rotational speed of disk

Hardware sector interleave

Track skew

Cylinder skew

Head switch time in microseconds
Track-to-track seek time in microseconds
Flags

Drive specific information

Reserved

Signature value (0x82564557)
Checksum

Number of partitions

Size of boot area

Yes
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
Yes
No

Maximum size of file system boot super block No

BSD Partition #1 (see Table 6.2)
BSD Partition #2 (see Table 6.2
BSD Partition #3 (see Table 6.2
BSD Partition #4 (see Table 6.2
BSD Partition #5 (see Table 6.2
BSD Partition #6 (see Table 6.2
BSD Partition #7 (see Table 6.2
BSD Partition #8 (see Table 6.2
BSD Partition #9 (see Table 6.2
BSD Partition #10 (see Table 6.2)
BSD Partition #11 (see Table 6.2)
BSD Partition #12 (see Table 6.2)
BSD Partition #13 (see Table 6.2)

)

)

)

—_— — — ~— ~— ~— ~— ~—

BSD Partition #14 (see Table 6.2
BSD Partition #15 (see Table 6.2
BSD Partition #16 (see Table 6.2
Unused

~ o~ o~ o~ o~ o~

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No

91

The 16-byte BSD partition table entries have the layout given in Table 6.2.
Table 6.2. Data structure for BSD disk label entry.

Byte Range Description

0-3
4-7
811
12-12
13-13
14-15

Essential
Size of BSD partition in sectors Yes
Starting sector of BSD partition Yes

File system fragment size No

File system type (see Table 6.3) No

File system fragments per block No

File system cylinders per group No

The file system type field identifies the type of file system that could be located in the BSD
partition. The type values shown in Table 6.3 are defined.

Table 6.3. BSD partition type values.

Type Description

0o N o 0ok~ 0O = O

©

10
11
12
13
14

Unused Slot

Swap space

Version 6

Version 7

System V

4.1BSD

Eighth edition

4.2BSD fast file system (FFS)
MSDOS file system (FAT)

4.4BSD log-structured file system (4.4LFS)
In use, but unknown or unsupported
0S/2 HPFS

CD-ROM (1S0O9660)

Bootstrap

Vinum drive

The most common file system for FreeBSD and OpenBSD is the 4.2BSD fast file system
(FES). The system will also have at least one swap partition. An NTFS partition will typically
have an 'in use, but unknown' type.

We can now look at an example system that has both FreeBSD and OpenBSD on it. The DOS
partition table has the following contents:

mmls -t dos bsd-disk.dd
Units are in 512-byte sectors

Start

0000000000
0000000001
0000000063
0002056320
0008209215

End Length Description
0000000000 0000000001 Primary Table (#0)
0000000062 0000000062 Unallocated
0002056319 0002056257 Win95 FAT32 (0xOB)
0008209214 0006152895 OpenBSD (0xA6)
0019999727 0011790513 FreeBSD (0xA5)

92

We can see that the disk has a 1GB FAT partition, a 3GB OpenBSD partition, and a 6GB
FreeBSD partition. Inside each of the OpenBSD and FreeBSD partitions are disk label
structures that describe additional partitions. The next two sections will look at the two BSD
partitions.

OpenBSD Example Image

We will first extract and parse the OpenBSD disk label. The partition starts in sector
2,056,320, and the disk label is located in the second sector.

dd if=bsd-disk.dd skip=2056321 bs=512 count=1 | xxd

0000000: 5745 5682 0500 0000 4553 4449 2f49 4445 WEV..... ESDI/IDE
0000016: 2064 6973 6b00 0000 4d61 7874 6£72 2039 disk...Maxtor 9
0000032: 3130 3234 4434 2020 0002 0000 3f00 0000 1024D42...
0000048: 1000 0000 ££3f 0000 £003 0000 £02b 3101 +1.

0000064: 0000 0000 0000 0000 100e 0100 0000 0000c.iiiiuunn.
[REMOVED - ZEROS]

0000128: 0000 0000 5745 5682 b65e 1000 0020 0000WEV.."... ..
0000144: 0000 0100 501f 0300 8060 1£f00 0004 0000P....
0000160: 0708 1000 e061 0900 dO7f 2200 0004 0000 a....".
0000176: 0108 1000 f02b 3101 0000 0000 0000 0000 +1l.........
0000192: 0000 0000 501f 0300 bOel 2b00 0004 0000P..... L
0000208: 0708 1000 8056 0200 0001 2£00 0004 0000 Voo /oo
0000224: 0708 1000 0000 0000 0000 0000 0000 0000 ...,
0000240: 0000 0000 3f4b 3c00 00f8 4000 0004 0000?K<...@.....
0000256: 0708 1000 80a0 Of00 8057 3100 0004 0000 Wil.....
0000272: 0708 1000 4160 1£f00 3f00 0000 0000 0000A ..%2.......
0000288: 0800 0000 9dae b300 3f43 7400 0000 0000 ?C}.....

0000304: 0200 0000 0000 0000 0000 0000 0000 0000 +.uvvuuennnennn..
0000320: 0000 0000 0000 0000 0000 0000 0000 0000 +.uveuuennnennn..
0000336: 0000 0000 0000 0000 0000 0000 0000 0000 +.uvvuuennennn..
0000352: 0000 0000 0000 0000 0000 0000 0000 0000 +uvvuuennennn..
0000368: 0000 0000 0000 0000 0000 0000 0000 0000 +.uvvuuennennn..
0000384: 0000 0000 0000 0000 0000 0000 0000 0000 +.uvvuuennnennn..
0000400: 0000 0000 0000 0000 0000 0000 0000 0000iiiiuunn.
[REMOVED]

We can see the two signature values, 0x82564557, at bytes 0 to 3 and 132 to 135. After the
second signature value, bytes 138 to 139 show that there are 16 (0x0010) partition table
entries. The partition table starts on the next line in byte 148 and continues for 16 16-byte

structures to end at 403. Entries 11 to 16 are not used and contain 0s. The remainder of the
sector is not used by the disk label structure.

The sixteen partition table entries can be parsed into the data shown in Table 6.4, where the
decimal value is given in parentheses.

Table 6.4. The contents of the BSD disk label structure in our example OpenBSD disk image.

Start Size Type
1 0x001f6080 (2,056,320) 0x00031f50 (204,624) 0x07 (7)
2 0x00227fd0 (2,260,944) 0x000961€0 (614,880) 0x01 (1)
3 0x00000000 (0) 0x01312bf0 (19,999,728) 0x00 (0)
4 0x002be1b0 (2,875,824) 0x00031f50 (204,624) 0x07 (7)
5 0x002f0100 (3,080,448) 0x00025680 (153,216) 0x07 (7)
6 0x00000000 (0) 0x00000000 (0) 0x00 (0)
7 0x0040f800 (4,257,792) 0x003c4b3f (3,951,423) 0x07 (7)
8 0x00315780 (3,233,664) 0x000fa080 (1,024,128) 0x07 (7)
9 0x0000003f (63) 0x001f6041 (2,056,257) 0x08 (8)
10 0x007d433f (8,209,215) 0x00b3ae9d (11,775,645) 0x0a (10)

93

Before we look at this in detail, we will review the special BSD partitions. The first partition
is for the root partition, and it contains the boot code. The second partition is for the swap
space, the third partition is for the entire disk, and partitions four and up are for any BSD
partition.

Our example image follows these guidelines, and the first partition begins at the start of the
DOS partition, which is sector 2,056,320. The second partition has a type value of 1, which
translates to swap space. The third partition begins in sector 0 and has the size of the entire
disk. Partitions 4, 5, 7 and 8 have a 4.2BSD FFS type and the starting sector of the partitions
increase until partition 9. Partition 9 has a starting sector of 63, and its type is for a FAT file
system. This partition is the BSD disk label entry for the FAT partition that is described in the
first entry of the DOS partition table. Partition 10 has an unknown type value and is the BSD
disk label entry for the FreeBSD partition that is the third entry in the DOS partition table that
we previously saw. Because partition 9 is labeled as 'i,’ the user could access the FAT
partition with device /dev/wd0i. Remember that OpenBSD ignores the DOS partition table
contents after it is loaded.

Table 6.5 shows to which partitions the user would have access from within this OpenBSD
system.

Table 6.5. A summary of the file systems the OpenBSD system could access.

Device Description Mounting Point Starting sector Ending Sector
/dev/wd0a4.2FFS BSD / 2,056,320 2,260,943
/dev/wd0b swap N/A 2260944 2875823
/dev/wdOc entire disk N/A 0 19999727
/dev/wd0d 4.2FFS BSD /tmp/ 2875824 3080447
/dev/wd0Oe 4.2FFS BSD /home/ 3080448 3233663
/dev/wd0g 4.2FFS BSD /var/ 4257792 820921
/dev/wd0h 4.2FFS BSD /usr/ 3233664 4257791
/dev/iwd0i FAT user's discretion 63 2056319
/dev/wd0j FreeBSD Partition N/A 8209215 19984859

Note that the FreeBSD partition cannot be mounted because its disk label must be first read to
identify the file system locations. We can see the same data from the disk label using the
mmls tool and supplying the bsd type. The offset of the BSD partition must be given using the
-o flag because we have a disk image.

mmls -t bsd -o 20563210 bsd-disk.dd

BSD Disk Label
Units are in 512-byte sectors

Slot Start End Length Description
00: 02 0000000000 0019999727 0019999728 Unused (0x00)
01: 08 0000000063 0002056319 0002056257 MSDOS (0x08)
02: 00 0002056320 0002260943 0000204624 4.2BSD (0x07)
03: 01 0002260944 0002875823 0000614880 Swap (0x01)
04: 03 0002875824 0003080447 0000204624 4.2BSD (0x07)
05: 04 0003080448 0003233663 0000153216 4.2BSD (0x07)
06: 07 0003233664 0004257791 0001024128 4 .2BSD (0x07)
07: 06 0004257792 0008209214 0003951423 4.2BSD (0x07)
08: 09 0008209215 0019984859 0011775645 Unknown (0x0A)

94

Remember that mm1s will sort the output based on the starting sector of the partition, so the
FAT partition is located at the beginning of the output even though it was the eighth entry in
the partition table. The 'slot' column shows where the partition was actually described.

FreeBSD Example Image
Now let's look at the FreeBSD partition in our example image. The partition starts in sector

8,209,215, and the disk label is in the second sector.

dd if=bsd-disk.dd skip=8209216 bs=512 count=1 | xxd

0000000
0000016:
0000032:
0000048
0000064
[REMOVED
0000128:
0000144:
0000160
0000176
0000192:
0000208
0000224
0000240:
0000256
0000272
0000288
0000304
0000320:
0000336
0000352:
0000368
0000384
0000400
0000416:
0000432:
000044s8:
0000464
0000480
0000496

5745
0000
0000
1000
0000

5682
0000
0000
0000
0000

- ZEROS]

0000
0000
0708
0100
0000
0708
0708
0708
0000
0000
0020
666a
e296
730b
e2ec
c645
0116
9008
a000
1000
££35
fc6l
20cO0
0115

0000
0000
0880
0000
0000
0880
0880
886f
0000
0000
0000
0266
ac98
8905
ebde
6668
do9e
0031
0036
0029
0c90
071f
25ff
do9oe

0500
0000
0000
81l4d
0000

5745
0000
a073
ble8
0000
0000
1175
0000
0000
eble
fa3l
9dbf
91le3
8875
c645
bb20
0£20
c9bl
0£fb7
dObl
0000
O0fal
ffff
0000

0000
0000
0000
0000
0000

5682
0800
1700
b300
0800
0800
8400
0000
0000
4254
c08e
00le
ldac
0288
0518
28e8
c066
108e
0513
3351
5151
0fa9
7£f0£
66ea

6164
0000
0002
£003
100e

b9%ab
3f43
3f43
3f43
dfbo6
dfb6
dfb6
0000
0000
5801
dObc
b900
92ad
5505
c645
bb00
83c8
dlbl
0400
5068
5151
cffa
22c0
e890

3073 3300
0000 0000
0000 3f00
0000 £02b
0100 0000

0800 0020
7400 0008
8500 0000
7400 0000
9c00 0008
a400 0008
ac00 0008
0000 0000
0000 0000
0180 £60f
0018 8ecO
3957 f3ab
93ad b608
83c0 048d
0810 c645
0£f01 ledé6
010f 22c0
380f 00d9
00cl e00a
0202 0000
52bl 076a
bc00 1800
31c9 0£22
1800 bl20

0000 WEV...
0000
0000

3101

0000

0000WEV......

0000

0000

0000
0000
0000

0000
0000 ...o.

0000
8007

8ed8
5fbe fj.f.
dleb
7d08 s....
0Odle
960f .Efh.
ea7f

ba00 ...1..

2d00 ...6.

6a2b ...)..
00e2 .5....
000f .a....
doof %, ..
8edl

We can see from the value in bytes 138 to 139 that there are eight partitions. The eight
partition table entries are in bytes 148 to 275 and can be parsed into the fields shown in Table
6.6, where the decimal values are given in parentheses.

Table 6.6. The contents of the BSD disk label in our FreeBSD example disk image.
Start
1 0x007d433f (8,209,215

3 0x007d433f (8,209,215

)
2 0x0085433f (8,733,503)
)

4 0x009cb6df
5 0x00a4b6df (10,794,719)
6 0x00acbedf (11,319,007)

(
(
(
(
(
(

7 0x00000000 (0)
8 0x00000000 (0)

10,270,431)

Size Type

0x00080000 (524,288) 0x07 (7)
0x001773a0 (1,536,928) 0x01 (1)
0x00b3e8b1 (11,790,513) 0x00 (0)
0x00080000 (524,288) 0x07 (7)
0x00080000 (524,288) 0x07 (7)
0x00847511 (8,680,721) 0x07 (7)
0x00000000 (0) 0x00 (0)
0x00000000 (0) 0x00 (0)

We see that the first BSD partition has the same starting sector as the DOS partition in which
the disk label is located, and it has a 4.2BSD FFS type. The second entry is for swap space,
and the third entry is for only the sectors in the DOS partition. Entries 4, 5, and 6 are FFS file

95

system partitions. To summarize, the device name and location of each partition that a

FreeBSD user would have access to is given in Table 6.7.

Device Description Mounting Point Starting sector Ending Sector
/dev/ad0s1 FAT DOS partition User's discretion 63 2056319
/dev/ad0s2 OpenBSD DOS partition N/A 2056320 8209214
/dev/ad0s3a4.2BSD FFS partition / 8209215 8733502
/dev/ad0s3b swap N/A 8733503 10270430
/dev/ad0s3c Entire FreeBSD DOS partition N/A 8209215 19999727
/dev/ad0s3d 4.2BSD FFS partition /tmp 10270431 10794718
/dev/ad0s3e 4.2BSD FFS partition /var 10794719 11319006
/dev/ad0s3f 4.2BSD FFS partition /usr 11319007 19999727

The mm1s tool from The Sleuth Kit can be used to list the disk label contents. The output for

Table 6.7. A summary of the file systems the FreeBSD system could access.

our example image is as follows:

mmls -t bsd -o 82092165 bsd-disk.dd

BSD Disk Label
Units are in 512-byte sectors

Slot Start End Length Description
00: -—-———- 0000000000 0008209214 0008209215 Unallocated
01: 00 0008209215 0008733502 0000524288 4.2BSD (0x07)
02: 02 0008209215 0019999727 0011790513 Unused (0x00)
03: 01 0008733503 0010270430 0001536928 Swap (0x01)
04: 03 0010270431 0010794718 0000524288 4.2BSD (0x07)
05: 04 0010794719 0011319006 0000524288 4.2BSD (0x07)
06: 05 0011319007 0019999727 0008680721 4.2BSD (0x07)

Note that the space allocated to the FAT and OpenBSD partition is marked as 'Unallocated'
because there are disk label entries for that space. The DOS partition table is needed to carve
that data into partitions.

Analysis Considerations

Each BSD partition in the disk label structure has a type field, but it is not enforced. It is
actually enforced less with the BSD systems than with Microsoft Windows because Windows
uses the type field to determine if the partition should get a drive letter or not. With a BSD
system, a device is created for every disk label entry, so the partitions can be mounted as any
type. Therefore, verify that the partition doesn't have a known file system even when the type

identifies it as an old UNIX format because it could actually be a common file system, such
as FAT.

The disk label structure is, at most, 404 bytes. For disk labels with only eight entries in them,
the disk label structure is only 276 bytes. Therefore, the rest of the 512-byte sector can be
used to hide data, although not a lot of it. If the DOS partition table is corrupt and the location
of the BSD-type partition cannot be determined, a search for the 0x82564557 signature value
can be performed. The signature value should exist at byte 0 and byte 132 of the disk label
structure.

With a FreeBSD system, remember that the user had access to both the DOS partitions and
the BSD partitions. Therefore, the investigation must include the analysis of all DOS
partitions and the BSD partitions. Note that the system may not have support for NTES, so
the user would not have been able to mount an NTFS partition if one exists.

96

With an OpenBSD system, remember that the user had access to only the partitions in the
disk label. Because OpenBSD ignores the DOS partition table when it starts, it can be useful
to compare the contents of the DOS partition table with the BSD disk label. Look for BSD
and DOS partitions that overlap and where gaps may exist. Figure 6.4 shows two interesting
examples of BSD partitions. One of the BSD partitions is contained inside the NTFS-type
DOS partition. If the NTFS partition has an NTFS file system inside it, this is an unlikely
scenario and should be investigated. The figure also shows a BSD partition that exists in
space that is unallocated to a DOS partition. This is not a good practice from a systems
administration point of view because another program may allocate the space to a DOS
partition and overwrite the BSD data, but it is possible.

Figure 6.4. A disk with two BSD partitions inside the OpenBSD type DOS partition, a BSD
partition inside the NTFS-type DOS partition, and a BSD partition that is not part of a DOS

partition.
| } Y
] NTHS CpenBSD

LI:
3 :

[MNon-Partitioned |

| DOS Partitioned |

| BSD Partitioned |

Summary

BSD partitions are described in a simple disk label structure. A difficulty for an investigator
is to identify all the data that the user had access to on the suspect system. BSD systems are
frequently used as servers and are involved with criminal and corporate investigations. A
thorough understanding of BSD partitions will provide more comprehensive investigations.

Sun Solaris Slices

The Solaris operating system from Sun Microsystems is used in large servers and desktop
systems. It uses two different types of partitioning systems depending on the size of the disk
and the version of Solaris. Solaris 9 introduced support for file systems larger than 1-
terrabyte and uses EFI partition tables because they have a 64-bit address field [Sun 2003].
EFI partitions are described in the next section.

All other versions of Solaris use data structures that are similar to the BSD disk label that we
just looked at. In fact, the primary data structure is also called a disk label, although the actual
layout of the structure is different. This may not be surprising considering that the layout is
even different for Sparc-based Solaris and 1386-based Solaris. To make things confusing and
difficult to remember, the names of the Solaris data structures are the same as the BSD ones,
but the names of the media compartments are different. Solaris uses the term "slice" for each
of its partitions. For simplicity, I will use the term "Solaris partition" in this section, but keep
in mind that other books will likely use the proper term. I will break this discussion into three

97

sections and first discuss the general characteristics of the Solaris architecture, then the Sparc
data structure specifics, and finally the 1386 data structure specifics.

General Overview

When you install Solaris, a disk label structure is created on the disk. The exact location is
based on the hardware platform so that will be discussed more in later sections. The disk
label has a maximum number of partitions that it can describe, and the maximum is eight for
Sparc systems and 16 for 1386.

Each partition in the disk label is described with its starting location, size, a set of flags, and a
type. The flags tell you if the partition is read only and if it cannot be mounted, such as the
swap space. In the other partition systems that we have seen in this book, the type field was
used to describe the file system type, but in Solaris it typically describes the mounting point
of the partition. For example, some types specify the home, usr, or var partitions, and others
specify the swap space or unassigned. A full listing of types is given in the "Data Structures"
section.

Solaris uses a cryptic, but scalable, naming convention for the partitions. When you are in a
Solaris environment, the block devices can be found in the /dev/dsk/ directory, and the raw
devices can be found in the /dev/rdsk/ directory. Within those directories, the Solaris
partitions (or slices) have names such as cWtXdYsZ in a Sparc system and cWdYsZ in an
1386 system. In the name, the W is replaced by the controller number, X is replaced by the
physical bus target number (SCSI ID), Y is replaced by the drive number on the bus, and Z is
replaced by the slice number on the drive. For example, if your Sparc system has only one
controller, the disk is SCSI ID 6, and you want slice 5, you would access the raw device at
/dev/rdsk/c0t6d0s5.

With Solaris, it is common for a partition to have a location in the disk label table that is
based on its mounting point. This is not a requirement, but a disk that has the operating
system on it will typically use the naming convention given in Table 6.8.

Table 6.8. The typical partition that is created in each table entry.
Table Entry Description
/root/partition—The operating system and kernel
Swap space
The entire disk, including the disk label and all partitions
/export/ partition
/export/swap/ partition
/opt/ partition
/usr/ partition
/home/ partition

N OO o A WO N =2 O

Additional disks that are added to the system may only have one partition on them, and that
partition may use partitions entry 5, 6, or 7.

Sparc Data Structures

On a Sparc system, the disk label structure is created in the first sector of the disk, sector 0.
Sectors 1-15 contain the "bootblock," which is the boot code for the system, and sectors 16
and above are partitioned to store file systems and swap space. Solaris uses a UFS file
system, and we will see in Chapter 16 that the file system starts in sector 16. We can see the
layout of an example Sparc disk in Figure 6.5.

98

Figure 6.5. The layout of a Sun Sparc disk where the disk label and boot code are located in

the first partition.

Y

l

Fartition #1 Fartition #2

Partition #3

X

Disk Boot
Label Code

The layout of the disk label can be confusing because the layout information for the Solaris

partitions is not in one location. There are two data structures within the disk label structure

that hold the partition data. The VTOC structure contains the number of partitions and the

type, permissions, and timestamps for each, but the starting location and size of each partition

is stored in the disk map structure. The contents of the Sparc disk label are given in Table 6.9.
Table 6.9. Data structure for the Sun Sparc disk label.

Byte Range Description

0-127
128-261
262-263
264-265
266-419
420-421
422-423
424-425
426-429
430-431
432-433
434-435
436-437
438-439
440-443
444-451
452-459
460-467
468-475
476-483
484-491
492-499
500-507
508-509
510-511

ASCII Label

Sparc VTOC (see Table 6.10)
Sectors to skip, writing
Sectors to skip, reading
Reserved

Disk speed

Number of physical cylinders
Alternates per cylinder
Reserved

Interleave

Number of data cylinders
Number of alternate cylinders
Number of heads

Number of sectors per track
Reserved

Partition #1 disk map (see Table 6.13
Partition #2 disk map (see Table 6.13
Partition #3 disk map (see Table 6.13
Partition #4 disk map (see Table 6.13
Partition #5 disk map (see Table 6.13
Partition #6 disk map (see Table 6.13
Partition #7 disk map (see Table 6.13
Partition #8 disk map (see Table 6.13

Signature Value (0xDABE)
Checksum

Essential
No
Yes
No
No
No
No
No
No
No
No
No
No
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes

—_— — — — — — — —

Yes
No
No

99

The VTOC can be found in bytes 128 to 261. This structure tells you how many partitions
there are (bytes 12-13) and the flags, type, and a timestamp for each partition. The VTOC
has the fields given in Table 6.10.

Table 6.10. Data structure for the VTOC in Sun Sparc disk labels.

Byte Range Description Essential
0-3 Version (0x01) No
4-11 Volume Name No
12-13 Number of Partitions Yes
14-15 Partition #1 type (see Table 6.11) No
1617 Partition #1 flags (see Table 6.12) No
18-19 Partition #2 type (see Table 6.11) No
20-21 Partition #2 flags (see Table 6.12) No
22-23 Partition #3 type (see Table 6.11) No
24-25 Partition #3 flags (see Table 6.12) No
2627 Partition #4 type (see Table 6.11) No
28-29 Partition #4 flags (see Table 6.12) No
30-31 Partition #5 type (see Table 6.11) No
32-33 Partition #5 flags (see Table 6.12) No
34-35 Partition #6 type (see Table 6.11) No
36-37 Partition #6 flags (see Table 6.12) No
38-39 Partition #7 type (see Table 6.11) No
40-41 Partition #7 flags (see Table 6.12) No
42-43 Partition #8 type (see Table 6.11) No
44-45 Partition #8 flags (see Table 6.12) No
46-57 Boot info No
58-59 Reserved No
60-63 Signature Value (0x600DDEEE) No
64—101 Reserved No
102—-105 Partition #1 timestamp No
106—-109 Partition #2 timestamp No
110-113 Partition #3 timestamp No
114-117 Partition #4 timestamp No
118—-121 Partition #5 timestamp No
122—-125 Partition #6 timestamp No
126—129 Partition #7 timestamp No
130-133 Partition #8 timestamp No

The type field for each of the partitions in the VTOC specifies what the partition is used for
and where it should be mounted. The operating system will use a different configuration file,
though, when it comes time to actually mount the file systems. So just because the type is set
for the /usr/ partition does not mean that it will be mounted as /usr/. The Solaris disk label

100

structure does not specify the file system type for each partition, as other partition systems
do. The partition type can have the values given in Table 6.11.

Table 6.11. Type values for each Sun partition (used for both Sparc and i386).
Value Description

Unassigned

partition /boot/

/ partition

Swap

/usr/ partition

The entire disk

/stand/ partition

/var/ partition

/home/ partition

Alternate sector partition
0 cachefs partition

= O© 00 N O O W DNV =+ O

Each partition also has a flags field, and it can have the values given in Table 6.12 (or none of
them):

Table 6.12. Flag values of each Sun partition (used for both Sparc and i386).

Value Description
1 The partition cannot be mounted
128 The partition is read-only

The previous information is useful, but the most important part of the disk label, for this
discussion, is the location of the partitions. The disk map structures, not the VTOC, contain
the starting cylinder and size of each partition. The disk map structures are located at the end
of the disk label structure and have the fields given in Table 6.13.

Table 6.13. Data structure for the Sun Sparc disk label disk map.

Byte Range Description Essential
0-3 Starting Cylinder Yes
4-7 Size Yes

We care about the starting sector and not the cylinder, so we will need to convert this value—
it is actually quite simple. Recall that cylinder address X is the collection of tracks at address
X on each platter in a disk. To convert the cylinder address to a sector address, we multiply
the cylinder value with the number of sectors per track and the number of heads (which can
both be found in the disk label structure).

For example, consider a disk with 15 heads and 63 sectors per track. If the starting cylinder
were 1,112, then we would calculate
63 * 15 * 1,112 = 1,050,840

Therefore, we would use sector 1,050,840 to extract the data and examine the data with our
tools that support the LBA addressing scheme.

Let's get our hands dirty with some data structures and a hex editor. The following is the first
sector of a Solaris Sparc hard disk:

101

dd if=sparc-disk.dd bs=512 count=1 | xxd
0000000: 4dé61 7874 6£72 2038 3532 3530 4136 2063
0000016: 796c 2031 3038 3534 2061 6c74 2032 2068

Maxtor 85250A6 c
yl 10854 alt 2 h

0000032: 6420 3135 2073 6563 2036 3300 0000 0000 d 15 sec 63.....
0000048: 0000 0000 0000 0000 0000 0000 0000 0000iiiiuunn.
[REMOVED - ZEROS]

0000128: 0000 0001 0000 0000 0000 0000 0008 0002 v nnn.
0000144: 0000 0003 0001 0005 0000 0000 0000 0000cveieunn.
0000160: 0000 0007 0000 0004 0000 0008 0000 0000iiiuunn.
0000176: 0000 0000 0000 0000 0000 0000 600d deee
[REMOVED - ZEROS]

0000416: 0000 0000 1518 2a68 0000 0000 0000 OOO1L *h........
0000432: 2a66 0002 000f 003f 0000 0000 0000 0826 *£..... i &
0000448: 0020 b06b 0000 0000 0010 0176 0000 0000 . .k....... V...
0000464: 009c 8286 0000 0000 0000 0000 0000 0000ciiiuunn.
0000480: 0000 0000 0000 0609 0007 cdOd 0000 1101c.cieunn..
0000496: 005d bdd5 0000 0458 0006 3e61 dabe 1lffe .]..... X..>a....

A Sparc system uses big-endian ordering, and therefore you do not need to reverse the
numbers. The first eight lines show the 128-byte ASCII label, which describes the type of
hard disk. The VTOC starts at 128 and bytes 140 to 141 show that there are 8 partitions in the
structure. From bytes 142 to 173 we can see the 2-byte type and 2-byte flag fields for each
partition. For example, the first partition has its type value in bytes 142 to 143 and it is 2,
which is the / partition. Its flag value is in bytes 144 to 145, and it is 0. Bytes 146 to 147
show that the second partition has a type of 3 (swap space) and bytes 148 to 149 show that its
flag is 1 (not mountable).

Bytes 436 to 437 show us that there are 15 (0x0f) heads and bytes 438 to 439 show that there
are 63 (0x3f) sectors per track. We will need this to convert the cylinder addresses.

The layout information starts at byte 444, and the starting cylinder and size are both 4-byte
values. The first partition has a starting cylinder of 2,086 (0x00000826) and a size of
2,142,315 (0x0020b06b) sectors. Recall that this partition had a type for the / partition. To
calculate the starting sector, we multiply

15 * 63 * 2,086 = 1,971,270

This partition is in the first slot, and therefore it would be "slice 0" for the disk, even though
it starts thousands of sectors into the disk. The next partition is described in bytes 452 to 459,
and its starting cylinder is 0 with a size of 1,048,950 (0x00100176) sectors. This is the swap
space for the system and it is "slice 1." The third partition entry, "slice 2," is usually for the
entire disk, and it is located in bytes 460 to 467. Its starting cylinder is 0 and size is
10,257,030 (0x009c8286) sectors.

The Sparc disk label can be viewed with several tools, but not all are useful during an
investigation. The format and prtvtoc commands in Solaris can be run only on a device, not
on a disk image file. The fdisk command in Linux can be used to list the partitions from a
Sparc disk image though. You also can use the mm1s tool in The Sleuth Kit with the -t sun
flag. Running mm1s on the example image gives:

mmls -t sun sparc-disk.dd
Sun VTOC
Units are in 512-byte sectors

Slot Start End Length Description
00: 01 0000000000 0001048949 0001048950 swap (0x03)
01: 02 0000000000 0010257029 0010257030 backup (0x05)
02: 07 0001050840 0001460024 0000409185 /home/ (0x08)
03: 05 0001460025 0001971269 0000511245 /var/ (0x07)
04: 00 0001971270 0004113584 0002142315 / (0x02)
05: 06 0004113585 0010257029 0006143445 /usr/ (0x04)

102

Figure 6.6. An i386 Sun disk with three DOS partitions. The final one contains a disk label and
three Sun partitions.

Y

I: FAT Solaris Boot

v
Solaris File System

Partition Partition Partition
Dos Partition
Table
-
“7% ‘ :
Partition #1 Partition #2 Partition #3
Disk
Label

1386 Data Structures

When Solaris is installed on an 1386 system, one or more DOS-based partitions must be first
created. A typical installation will create a boot partition (DOS partition type OxBE) and a
partition with the file systems (DOS partition type 0x82). The boot partition contains the boot
code needed to start the system and does not contain an actual file system. The disk label
structure is located in the second sector of the file system DOS partition (type 0x82) and it
describes the layout of the Sun partitions inside of that DOS partition. All Sun partitions must
start after the start of the DOS partition. We can see this in Figure 6.6, where there is a disk
with three DOS partitions, and the final one contains a disk label and three Sun partitions.

The disk label structure is 512 bytes in size and is better organized than the Sparc version
because all the partition information is in one location. Another benefit of the 1386 version is
that the information is stored by using LBA addresses and not CHS. Other than those
differences, the two structures are very similar. The first 456 bytes of the disk label are called
the Volume Table of Contents (VTOC), and this is where the partitions, disk label, sector size,
and number of partitions is located. The disk label data structure is given in Table 6.14.

Table 6.14. Data structure for the Sun i386 disk label.

Byte Range Description Essential
0-11 Bootinfo No
12-15 Signature Value (Ox600DDEEE) No
16—19 Version No
2027 Volume Name No
28-29 Sector size Yes
30-31 Number of Partitions Yes
32-71 Reserved No
72-83 Partition #1 (see Table 6.15) Yes
84-95 Partition #2 (see Table 6.15) Yes
96-107 Partition #3 (see Table 6-15) Yes
108—-119 Partition #4 (see Table 6.15) Yes

103

120-131 Partition #5
132—-143 Partition #6 (see Table 6.15 Yes

see Table 6.15) Yes

)

144—-155 Partition #7 (see Table 6.15) Yes
)

)

~ o~ o~ o~

156-167 Partition #8 (see Table 6.15 Yes

168—-179 Partition #9 (see Table 6.15 Yes

180—191 Partition #10 (see Table 6.15) Yes
192-203 Partition #11 (see Table 6.15) Yes
204-215 Partition #12 (see Table 6.15) Yes
216-227 Partition #13 (see Table 6.15) Yes
228-239 Partition #14 (see Table 6.15) Yes
240-251 Partition #15 (see Table 6.15) Yes
252-263 Partition #16 (see Table 6.15) Yes
264-327 Timestamps (not used) No
328-455 Volume Label No
456-507 Hardware Details No
508-509 Signature Value (OxDABE) No
510-511 Checksum No

Each of the 16 partition entries has the data structure given in Table 6.15.

Table 6.15. Data structure for the Sun i386 disk label partition entry.

Byte Range Description Essential
0-1 Partition Type (see Table 6.11) No

2-3 Flag (see Table 6.12) No

4-7 Starting Sector Yes

8-11 Size in Sectors Yes

The type and flag fields use the same values that were described in the preceding section on
Sparc data structures. To identify the partitions that an i386 Solaris system has, the partition
entries in the VTOC are examined, and the layout is determined using the starting sector and
the size. The starting sector is relative to the DOS-based partition (the one with type 0x82). In
our example disk image, the DOS partition with the disk label starts in sector 22,496.
Therefore, the disk label is located in 22,497, shown here:

dd if=i386-disk.dd bs=512 skip=22497 | =xxd

0000000: 0000 0000 0000 0000 0000 0000 eede 0d60 !
0000016: 0100 0000 0000 0000 0000 0000 0002 1000vivvnenn.n.
0000032: 0000 0000 0000 0000 0000 0000 0000 0000
0000048: 0000 0000 0000 0000 0000 0000 0000 0000
0000064: 0000 0000 0000 0000 0200 0000 cO0e 1000i.inieinnn.n.
0000080: 0082 3e00 0300 0100 dOOb 0000 £002 1000 ..>.............

0000096: 0500 0000 0000 0000 309a 7001 0000 0000 0.p.....
0000112: 0000 0000 0000 0000 0000 0000 0000 0000
0000128: 0000 0000 0400 0000 c090 4e00 2000 faOO N.

0000144: 0000 0000 0000 0000 0000 0000 0800 0000
0000160: e090 4801 0041 1£00 0100 0100 0000 0000 ..H..A..........
0000176: £003 0000 0900 0100 £003 0000 e007 0000
[REMOVED - ZEROS]

0000320: 0000 0000 0000 0000 4445 4641 554c 5420 DEFAULT
0000336: 6379 6c20 3233 3936 3420 61l6c 7420 3220 cyl 23964 alt 2
0000352: 6864 2031 3620 7365 6320 3633 0000 0000 hd 16 sec 63....

104

[REMOVED - ZEROS]

0000448: 0000 0000 0000 0000 9e5d 0000 9c¢5d 0000 1...1..
0000464: 0200 0000 1000 0000 3£00 0000 0100 0OOOO0 P,
0000480: 0000 100e 0000 0000 0000 0000 0000 0000
0000496: 0000 0000 0000 0000 0000 0000 beda a24a J

This is from an 1386 system, which means that the values are stored in little-endian ordering.
At offset 30 we see that there are 16 (0x10) partitions in the table. The first partition entry
begins at offset 72 and ends at offset 83. Bytes 72 to 73 show us that it has a type of 0x02,
which is the root partition. The starting sector is given in bytes 76 to 79 and we see 1,052,352
(0x00100ECO0). Bytes 80 to 83 give the partition size and we see 4,096,512 (0x003e8200).
There are 10 partitions being used in this disk label, and the last one is located at bytes 180 to
191. The timestamps are all zero, and the volume name is "DEFAULT" with the disk
geometry information.

For an 1386 disk image, you can use any DOS-partition tool to list where the boot partition
and file systems partitions are located. Here is the output from running mmls on an 1386
Solaris disk:

mmls -t dos i386-disk.dd
DOS Partition Table
Units are in 512-byte sector

Slot Start End Length Description
00: —-———- 0000000000 0000000000 0000000001 Primary Table (#0)
01: -—-———- 0000000001 0000001007 0000001007 Unallocated
02: 00:00 0000001008 0000022175 0000021168 Solaris 8 Boot (OxBE)
03: —-——— 0000022176 0000022495 0000000320 Unallocated
04: 00:01 0000022496 0024180911 0024158416 Linux Swap / Solaris x86 (0x82)

Recall that the OxBE type partition contains the boot code and does not contain a file system.
The file systems and disk label structure are located in the 0x82-type partition. You can get
the same output using the fdisk tool in Linux, but fdisk will not list the Solaris partitions in
the disk label. To view the file systems, you can either extract the partition that starts at
22,496 or simply call mm1s with the -o flag to set the offset.

mmls -t sun -o 22496 disk8.dd

Sun VTOC
Units are in 512-byte sectors
Slot Start End Length Description
00: 02 0000000000 0024156719 0024156720 backup (0x05)
01: 08 0000000000 0000001007 0000001008 boot (0x01)
02: 09 0000001008 0000003023 0000002016 alt sector (0x09)
03: 01 0000003024 0001052351 0001049328 swap (0x03)
04: 00 0001052352 0005148863 0004096512 / (0x02)
05: 05 0005148864 0021532895 0016384032 /usr/ (0x04)
06: 07 0021532896 0023581151 0002048256 /home/ (0x08)

Recall that these addresses are relative to the start of the DOS partition, so you will have to
add 22,496 to any of the starting sector addresses when you extract them with dd. I have
found that when you boot Linux with an 1386 Solaris disk as one of the slave disks, Linux
makes devices for only the first eight of the Solaris partitions. Devices are not created for any
of the partitions after the first eight.

Analysis Considerations

The special considerations for a Solaris investigation are the same ones that other partition
systems have. There are some unused values in the disk label structure, and they could be
used to store data, although there is not much unused space.

105

As with other partition systems, the 'type' field in the partition description is not enforced.
Just because the disk label structure says that the partition is for the /var/ partition or swap
space does not mean that it is. As always, look at the disk for unused space.

If the location of the disk label cannot be determined, a search can be performed using the
signature values. The signature value of Ox600DDEEE exists inside the disk label, and
0xDABE exists in bytes 508 to 509.

Summary

Solaris systems are common in corporate settings and will be investigated for intrusions and
cases of fraud. This section has shown how Solaris organizes its disks and how the layout can
be listed and extracted. The disk label structure is fairly simple, and it can be read with the
fdisk or mm1ls tools.

GPT Partitions

Systems with 64-bit Intel Itanium processors (IA64) do not have a BIOS like IA32 systems
do. Instead, they have an Extensible Firmware Interface (EFI). EFI (available at
http://www.intel.com/technology/efi) is also used by non-Intel platforms, such as Sun
Sparc systems. The EFI uses a partition system called the GUID Partition Table (GPT) that
can support up to 128 partitions and uses 64-bit LBA addresses. Backup copies of the
important data structures are maintained in case of failure. At the time of this writing, GPT
disks are found in high-end servers and not in typical desktop systems.

General Overview
A GPT disk has five major areas to it, as shown in Figure 6.7. The first area is the Protective
MBR, and it starts in the first sector of the disk and contains a DOS partition table with one
entry. The single entry is for a partition with a type of OxEE that spans the entire disk. This
partition exists so that legacy computers can recognize the disk as being used and do not try
to format it. EFI does not actually use the partition, though.

Figure 6.7. A GPT disk has five areas in its layout.

Protective GPT Partition Partition Backup
MER Header Table Area Area

; l

N | |

The second part of the GPT disk starts in sector 1 and contains the GPT header. The header
defines the size and location of the partition table, which are fixed when the GPT disk is
created. Windows limits the number of entries in the partition table to 128 [Microsoft 2004].
The header also contains a checksum of the header and the partition table so that errors or
modifications can be detected.

The third section contains the partition table. Each entry in the partition table contains a
starting and ending address, a type value, a name, attribute flags, and a GUID value. The 128-
bit GUID is supposed to be unique for that system and is set when the partition table is
created.

The fourth section of the disk is the partition area. The partition area is the largest area and
contains the sectors that will be allocated to partitions. The starting and ending sectors for this
area are defined in the GPT header. The final section of the disk contains a backup copy of
the GPT header and partition table. It is located in the sector following the partition area.

106

Data Structures

The first area of a GPT disk uses a standard DOS partition table, which we previously
examined. A GPT disk has a DOS partition table with one entry that spans the entire disk. An
example is shown here:

mmls -t dos gpt-disk.dd
DOS Partition Table
Units are in 512-byte sectors
Slot Start End Length Description
00: —-———- 0000000000 0000000000 0000000001 Primary Table (#0)
01: 00:00 0000000001 0120103199 0120103199 GPT Safety Partition (OxEE)

Following the DOS partition table, sector 1 contains the GPT header. The GPT header
describes the layout of the disk. Its data structure is given in Table 6.16.

Table 6.16. Data structure for the GPT header.

Byte Range Description Essential
0-7 Signature value ("EFI PART") No
8-11 Version Yes
12-15 Size of GPT header in bytes Yes
16—-19 CRC32 checksum of GPT header No
20-23 Reserved No
24-31 LBA of current GPT header structure No
32-39 LBA of the other GPT header structure No
40-47 LBA of start of partition area Yes
48-55 LBA of end of partition area No
56-71 Disk GUID No
72-79 LBA of the start of the partition table Yes
80-83 Number of entries in partition table Yes
84-87 Size of each entry in partition table Yes
8891 CRC32 checksum of partition table ~ No
92—-End of Sector Reserved No

Using these values, we can determine the layout of the disk including the locations of the
partition table, partition area, and backup copies of the GPT header and partition table.

The GPT header for an example disk image is shown here:

dd if=gpt-disk.dd bs=512 skip=1 count=1 | xxd
0000000: 4546 4920 5041 5254 0000 0100 5c00 0000 EFI PART....\...
0000016: 8061 a3b0 0000 0000 0100 0000 0000 0000 .a..............

0000032: 1fal 2807 0000 0000 2200 0000 0000 0000 ..(..... LI
0000048: feal 2807 0000 0000 7e5e 4dal 1102 5049 .. (..... ~AM. . .PI
0000064: ab2a 79a6 3ea6 3859 0200 0000 0000 0000 .*y.>.8Y........
0000080: 8000 0000 8000 0000 69a5 7180 0000 0000 i.q.....
0000096: 0000 0000 0000 0000 0000 0000 0000 0000iiiiuunn.
[REMOVED]

We can see the signature value in the first 8 bytes and bytes 12 to 15 show us that the size of
the GPT header is 96 bytes (0x5c¢). Bytes 32 to 39 show that the backup copy of the header is
located in sector 120,103,199 (0x0728alaf). Note that this is the same sector that we saw as
the last sector of the DOS protection partition. Bytes 40 to 47 show that the partition area
starts in sector 34 (0x22) and ends in sector 120,103,166 (0x0728a0fe). Bytes 72 to 79 show
that the partition table starts in sector 2, and bytes 80 to 83 show that there are 128 (0x80)

107

entries in the table. Bytes 84 to 87 show that each entry is 128 (0x80) bytes, which means that
32 sectors are needed.

Using the information from the GPT header, we can locate the start and end of the partition
table and the size of each entry. Each table entry has the fields in Table 6.17.

Table 6.17. Data structure for each GPT partition table entry.

Byte Range Description Essential
0-15 Partition type GUID No

16-31 Unique partition GUID No

32-39 Starting LBA of partition Yes
40-47 Ending LBA of partition Yes
48-55 Partition attributes No
56-127 Partition name in Unicode No

The 128-bit type value identifies the contents of the partition. With a GPT disk, partitions are
used to hold both system information and file systems. For example, every computer that uses
EFI must have an EFI System Partition that contains the files needed to start the system's
hardware and software. The vendors assign the type values; unfortunately, there is currently
no central list of values that are being used. The Intel specification defines the partition types
given in Table 6.18.
Table 6.18. GPT partition types defined by Intel.

GUID Type Value Description

00000000-0000-0000-0000-000000000000 Unallocated entry

C12A7328-F81F-11D2-BA4B-00A0C93EC93B EFI| system partition

024DEE41-33E7-11d3-9D69-0008C781F39F Partition with DOS partition table inside

Microsoft has defined some of the type values that it uses, and they are given in Table 6.19.

Table 6.19. GPT partition types that Microsoft has defined.
GUID Type Value Description
E3C9E316-0B5C-4DB8-817D-f92DF00215AE Microsoft Reserved Partition (MRP)
EBDOAOA2-B9E5-4433-87C0-68B6B72699C7 Primary partition (basic disk)
5808C8AA-7E8F-42E0-85D2-E1E90434CFB3 LDM metadata partition (dynamic disk)
AF9B60A0-1431-4F62-BC68-3311714A69AD LDM data partition (dynamic disk)

Windows uses a "Reserved Partition" to store temporary files and data. A "Primary Partition"
is a basic partition and a file system is located inside of it. Primary partitions are similar to
the primary partitions that we saw with DOS partitions. The "LDM Metadata Partition" and
"LDM Data Partition" are used for Microsoft dynamic disks, which are described in the next
chapter. Dynamic disks are used to merge the data from multiple disks into one volume.

The 64-bit attribute field is divided into three parts. The lowest bit is set to 1 when the system
cannot function without this partition. This is used to determine if a user is allowed to delete a
partition. Bits 1 to 47 are undefined and bits 48—-63 can store any data that the specific
partition type wants. Each partition type can use these values as they like.

Here are the contents of a partition table entry from our very basic system:

dd if=gpt-disk.dd bs=512 skip=34 | dd bs=128 skip=3 count=1 | xxd
0000000: 16e3 c9e3 5cO0b b84d 817d £92d £002 15ae\..M.}.—-....
0000016: 2640 69eb 2f99 1942 afcO0 d673 7cOb 8ae4 &Ri./..B...s|...

108

0000032: 2200 0000 0000 0000 0080 3e00 0000 OOOO "™......... >, ...
0000048: 0000 0000 0000 0000 0000 ffff ffff ff£ff
0000064: ffff ffff ffff £fff fEff £EEf £EEFf £EEE,
[REMOVED]

The top line is bytes O to 15, and we see the Partition type GUID and the Partition GUID is
given on the second line in bytes 16 to 31. The starting address of the partition is in bytes 32
to 39, and we see that it is sector 32 (0x0022). The ending address of the partition is given in
bytes 40 to 47 and it is 4,096,000 (0x003E8000).

We can see the output of running mm1s on this image here:

mmls -t gpt gpt-disk.dd
GUID Partition Table
Units are in 512-byte sectors

Slot Start End Length Description
00: —-———- 0000000000 0000000000 0000000001 Safety Table
01: -—-———- 0000000001 0000000001 0000000001 GPT Header
02: —-———- 0000000002 0000000033 0000000032 Partition Table
03: 00 0000000034 0004096000 0004095967
04: 01 0004096001 0012288000 0008192000

At the end of the disk are the backup copies of the GPT header and partition table. They are
in reverse order: The GPT header is in the last sector, and the partition table is before it. In
our example image, the backup GPT header is in sector 120,103,199.

Analysis Considerations

At the time of this writing, GPT disks are rare, and most investigation tools do not advertise
whether or not they support them. Linux can be used to breakup a GPT disk into partitions so
that other file system analysis tools can be used. The Sleuth Kit also supports GPT partitions
if you need to break the disk up.

GPT disks have a backup copy of the partition table so data can be more easily recovered if
the original table becomes corrupt. The unused portions of sector 0, sector 1, and any of the
unused partition entries could be used to hide data.

Summary

As of the writing of this book, GPT partitions are not frequently encountered during
investigations, and not all forensic analysis tools support them. In the future, this will surely
not be the case as more systems use 64-bit hardware. GPT partitions are much more flexible
and simple than the DOS partitions.

Bibliography

FreeBSD Documentation Project. "FreeBSD Handbook." 2005. http://www. freebsd.org.
Holland, Nick, ed. "OpenBSD Installation Guide." January 2005.
http://www.openbsd.org/faqg/fag4.html.

Intel. Extensible Firmware Interface, Version 1.10, December 1, 2002.
http://developer.intel.com/technology/efi/.

Marshall Kirk McKusick, Keith Bostic, Michael Karels, John Quaterman. The Design and
Implementation of the 4.4 BSD Operating System. Boston: Addison Wesley, 1996.

Marshall Kirk McKusick, George V. Neville-Neil. The Design and Implementation of the
FreeBSD Operating System. Boston: Addison Wesley, 2005.

Mauro, Jim, and Richard McDougall. Solaris Internals: Core Kernel Architecture. Upper
Saddle River: Sun Microsystems Press, 2001.

109

Microsoft. "Disk Sectors on GPT Disks." Windows® XP Professional Resource Kit

Documentation, 2004.
http://www.microsoft.com/resources/documentation/Windows/XP/all/reskit/en—
us/Default.asp?url=/resources/documentation/Windows/XP/all/reskit/en-

us/prkd_tro_zkfe.asp.
Sun. "Solaris 9 System Administration Guide: Basic Administration. Chapter 31." May 2002.
http://docs.sun.com/db/doc/806-4073/6jd67r9fn?a=view.

Sun. "System Administration Guide: Basic Administration. Chapter 32: Managing Disks."

April 2003.
http://docsun.cites.uiuc.edu/sun_docs/C/solaris_9/SUNWaadm/SYSADV1/pll7.htm

1.

Winsor, Janice. Solaris System Administrator's Guide. 3rd edition. Palo Alto: Sun
Microsystems Press, 2000.

110

Chapter 7. Multiple Disk Volumes

In many critical servers, multiple disks are used for performance, reliability, or scalability.
The disks are merged and processed so that they look normal but they are not. This chapter
covers RAID and disk spanning systems, both of which can be difficult to investigate. There
can be many challenges when investigating a system that uses a multiple disk volume, and
not all the problems have been solved. This chapter explains the technology behind both of
these volume systems and then provides some suggestions for analyzing or acquiring the
data. Of any chapter in this book, this will likely become outdated the most quickly because
new technology is being developed to create new types of storage systems and because new
analysis techniques will be developed to help fill the void in this area. The first part of this
chapter examines RAID systems, which provide redundancy, and the second part of the
chapter examines disk spanning, which creates larger volumes.

RAID

RAID stands for Redundant Arrays of Inexpensive Disks and is commonly used in high-
performance systems or in critical systems. RAID was first proposed in the late 1980s as a
method of using inexpensive disks to achieve performance and storage capacities similar to
the expensive high-performance disks [Patterson, et al. 1988]. The main theory behind RAID
is to use multiple disks instead of one in order to provide redundancy and improve disk
performance. A hardware controller or software driver merges the multiple disks together,
and the computer sees a large single volume.

RAID used to be found only in high-end servers but is now becoming more common on
desktop systems. Microsoft Windows NT, 2000, and XP have the option to provide the user
with some level of RAID. In this section, we will first describe the technology involved with
RAID systems, and then we will discuss how to acquire or analyze a RAID system. A RAID
volume can be partitioned using any of the methods shown in Chapter 5, "PC-based
Partitions," and Chapter 6, "Server-based Partitions."

RAID Levels

There are multiple levels of RAID, and each level provides a different amount of reliability
and performance improvements. In this section, we will cover how six of the different RAID
levels work. A RAID volume is the volume created by the hardware or software that combines
the hard disks.

Figure 7.1. A RAID Level 0 volume with two disks and data striped across them in block-sized
chunks and a RAID Level 1 volume with two disks and data mirrored between them.

RAID O RAID 1
S E— S E— e E— S —
Do D1 Do Do
D2 D3 D1 D1
— S— S S
D4 Ds D2 D2
e e e — e
Disk 1 Disk 2 Disk 1 Disk 2

111

RAID Level 0 volumes use two or more disks, and the data is striped across the disks in
block-size chunks. When data are striped, consecutive blocks of the RAID volume are
mapped to blocks on alternate disks. For example, if there are two disks, RAID block O is
block 0 on disk 1, RAID block 1 is block 0 on disk 2, RAID block 2 is block 1 on disk 1, and
RAID block 3 is block 1 on disk 2. This can be seen in Figure 7.1 where 'D0,' 'D1,' 'D2," and
'D3" are blocks of data. A system would use this level of RAID for performance reasons and
not redundancy because only one copy of the data exists.

RAID Level 1 volumes use two or more disks and mirror the data. When data are written to
one disk, they are also written to the other disk, and both disks contain the same allocated
data. The two disks may contain different data in the sectors that are not used in the RAID
volume. If there is a disk failure, the other disk can be used for recovery. For example, if we
have two disks in a RAID Level 1 volume, RAID block 0 is block 0 on both disks 1 and 2,
RAID block 1 is block 1 on both disks 1 and 2, etc. This also can be seen in Figure 7.1.

RAID Level 2 volumes are rare and use error-correcting codes to fix any incorrect data when
it is read from the disks. The data are striped across many disks using bit-sized chunks, and
additional disks contain the error-correcting code values.

RAID Level 3 volumes require at least three disks and have a dedicated parity disk. The
parity disk is used to recognize errors in the other two disks or to recreate the contents of a
disk if it fails. An inefficient example of parity is traditional addition. If I have two values, 3
and 4, I can add them and my parity is 7. If at any time the two values do not add to 7, I know
that there is an error. If one of the values is lost, I can recover it by subtracting the value that
still exists from 7.

With RAID Level 3, the data are broken up into byte-sized chunks and striped, or alternated,
across the data disks. A dedicated parity disk contains the values needed to duplicate the data
to rebuild any data that is lost when one of the disks fails. This level is similar to what we
saw with Level 0, except that the striping size is much smaller (bytes instead of blocks) and
there is a dedicated parity disk. An example with two data disks and one parity disk can be
found in Figure 7.2.

Figure 7.2. A RAID Level 3 volume with two data disks and one parity disk.

RAID 3

S — — S —
DO D1 PO
D2 D3 P1
D4 D5 P2
e] e
Data Data Parity
Disk 1 Disk 2 Disk

A common method of calculating the parity information is by using the "exclusive or" (XOR)
operation. The XOR operator takes two one-bit inputs and generates a one-bit output using

112

the rules found in Table 7.1. The XOR of two values larger than one bit can be calculated by
independently applying the XOR rules to each set of bits.

Table 7.1. Rules for the XOR operation.

Input 1 Input 2 Output
0 0 0
0 1 1
1 0 1
1 1 0

The XOR operator is useful because if you know any of the two of the input or output values,
you can calculate the third value. This is similar to adding two numbers and then subtracting
one to get the original. For example, let there be three data disks and one parity disk. The data
disks have the values: 1011 0010, 1100 1111, and 1000 0001. The parity for these values
would be calculated as follows:

(1011 0010 XOR 1100 1111) XOR 1000 0001

(0111 1101) XOR 1000 0OO1
1111 1100

The byte 1111 1100 would be written to the parity disk. If the second disk failed, its byte
could be created as follows:
1111 1100 XOR (1011 0010 XOR 1000 0001)

1111 1100 XOR (0011 0011)
1100 1111

We have easily reconstructed the byte for the second disk.

RAID Level 4 volumes are similar to Level 3, except that the data is striped in block-sized
chunks instead of byte-sized chunks. Level 4 uses two or more data disks and a dedicated
parity disk, so its architecture is the same as shown in Figure 7.2.

RAID Level 5 volumes are similar to Level 4, but they remove the bottleneck associated with
the parity disk. In Level 5, there is no dedicated parity disk, and all the disks contain both
data and parity values on an alternating basis. For example, if there are three disks, RAID
block 0 is block O of disk 1, RAID block 1 is in block 0 of disk 2, and the corresponding
parity block is block 0 of disk 3. The next parity block will be block 1 of disk 2 and will
contain the XOR of block 1 of disks 1 and 3. This can be seen in Figure 7.3.

Figure 7.3. A RAID Level 5 volume with three disks and distributed parity data.

RAID 5
S——— S —— E——
DO D1 PO
D2 P1 D3
— —]]
P2 D4 D5
Disk 1 Disk 2 Disk 3

113

Level 5 is one of the more common forms of RAID and requires at least three disks. There
are many other RAID levels that are not very common. They combine multiple RAID levels
and make analysis even harder.

Hardware RAID

One method of creating a RAID volume is to use special hardware. This section will examine
how this is done and how to acquire such a system.

Background

A hardware RAID implementation can come in two major forms: as a special controller that
plugs into one of the buses or as a device that plugs into a normal disk controller, such as
ATA, SCSI, or Firewire. In either case, the hard disks plug into a special piece of hardware
and, in general, the computer sees only the RAID volume and not the individual disks. Figure
7.4 shows the connections between the disks, controller, and volume.

Figure 7.4. A hardware controller makes the disks look like one for the OS.

RAID Operating
Volume System
Hardware

RAID Controller

- e

If a special RAID controller is being used, the computer probes for the controller when
booting. With many [A32 systems, the BIOS for the RAID controller displays messages on
the screen, and the user can enter a setup screen to configure the controller and disks. The OS
needs hardware drivers for the RAID controller. Disks that are created with one controller
typically cannot be used with another controller. If a special device is being used that goes in
between the normal disk controller and the hard disks, no special drivers are needed.

Acquisition and Analysis

There are many types of RAID hardware implementations, so we will only provide some
basic guidelines here. To analyze the RAID volume, it is easiest to acquire the final RAID
volume as though it were a normal single disk and use the typical file system and partition
analysis tools. One method of performing this is to boot the suspect system with a bootable
Linux, or similar, CD that has drivers for the RAID controller. You can then use dd, or a
similar command, to acquire the final RAID volume. Note that some RAID volumes are very
large; therefore, you will need a large amount of disk space on which to store the image (or
maybe your own RAID volume).

Different bootable Linux CDs have drivers for different RAID controllers, so check your
favorite CDs and make a list of which controllers they support. You may need to make your
own CD or bring several CDs with you so that you are prepared.

114

If you do not have the needed drivers for the RAID controller for an onsite acquisition, the
individual disks and controller should be taken back to the lab. Not much has been published
about the layout of data on the individual disks, so it could be difficult to merge the disks
without the controller.

The RAID volume may not use all sectors on a disk and it is possible that the unused sectors
contain hidden data. Therefore, acquiring the contents of each disk in addition to the RAID
volume is the safest, although not always the easiest, solution. If you do not know the layout
of the data, it could be difficult to identify the unused sectors of the disk. If you have specific
keywords for which you are looking, the individual disks can be searched, in addition to
searching the RAID volume.

Software RAID

RAID volumes also can be implemented in software. This section will examine how this is
done and how to acquire a software RAID volume.

Background

With a software RAID, the operating system has special drivers that merge the individual
disks. In this scenario, the OS sees the individual disks, but may show only the RAID volume
to the user. The individual disks can typically be accessed through raw devices in UNIX
system or through device objects in Microsoft Windows. Most operating systems now offer
some levels of RAID, including Microsoft Windows NT, 2000, and XP; Apple OS X; Linux;
Sun Solaris; HP-UX; and IBM AIX. Software RAID is not as efficient as hardware RAID
because the CPU must be used to calculate the parity bits and split the data. We can see the
connections in Figure 7.5.

Figure 7.5. With software RAID, the OS merges the disks and it has access to each disk.

RAID
Volume
Operating .
System
RAID
Software
S\

= - T -

In Windows 2000 and XP, the Logical Disk Manager (LDM) controls the RAID volumes.
The LDM requires that disks be formatted as dynamic disks, which are different from the
DOS-based partitions that we previously saw in Chapter 5, "PC-Based Partitions." The LDM
can create RAID level O (striping), RAID level 1 (mirroring), and RAID level 5 (striping with
parity) volumes, although RAID levels 1 and 5 are available only with the server version of
Windows. A dynamic disk can be used for more than one RAID volume, but that is unlikely
if the system is using RAID for performance or redundancy reasons. All configuration
information for the Windows RAID volume is stored on the disks and not on the local
system. We will discuss LDM in much more detail later in the chapter when we discuss disk
spanning.

115

In Linux, RAID is achieved with the multiple device (MD) kernel driver. The disks in a Linux
RAID do not have to be formatted in any special way and can be normal DOS-partitioned
disks. The configuration information is stored on the local system in a configuration file,
/etc/raidtab by default. The resulting RAID volume gets a new device that can be
mounted as a normal disk. The MD driver supports RAID Level O (striping), RAID Level 1
(mirroring), and RAID Level 5 (striping with parity). There is an optional "persistent
superblock" option that places configuration information on the disk so that it can be used in
other systems besides the original system (which makes offsite analysis easier).

Acquisition and Analysis
Analysis and acquisition of software RAID is similar to a hardware RAID. Based on current
technology, the easiest scenario is to acquire the RAID volume so that the normal file system
tools can be used. Unlike hardware RAID, there are some analysis tools that can merge the
individual disks together.

With software RAID, you may not need the original software to recreate the RAID volume.
For example, Linux has support for Windows Logical Disk Management (LDM) and may be
able to properly merge the Windows disks. Not all Linux kernels ship with LDM enabled, but
you can enable it by recompiling the kernel. If you are using Microsoft Windows to create the
RAID volume, apply hardware write blockers to prevent overwriting data.

Let's look at a Windows LDM example with Linux. When you boot a Linux kernel with
support for LDM, a device is created for each of the partitions in the RAID. You have to edit
the /etc/raidtab file so that it describes the RAID setup and partitions. For example, the
following is a configuration file for a Windows LDM RAID Level O (striping) with two
partitions (/dev/hdb1 and /dev/hdd1) using 64KB blocks:
cat /etc/raidtab
raiddev /dev/mdO
raid-level
nr-raid-disks
nr-spare-disks
persistent-superblock 0

oNO

chunk-size 64k
device /dev/hdbl
raid-disk 0

device /dev/hddl
raid-disk 1

Using this configuration file, the device /dev/md0 could be mounted read-only or imaged
using dd. Test the process before an incident happens and make backup copies of real disks
during an incident. We will cover the process of using Linux with Windows LDM in more
detail in the "Disk Spanning" section. A similar process is used for making a Linux MD
software RAID on the acquisition system. If you can copy the raidtab file from the original
system, its contents can be used as a base to make the RAID volume on the acquisition
system.

EnCase from Guidance Software and ProDiscover from Technology Pathways can import the
disks from a Windows RAID volume and analyze them as though they were a single volume.
This is actually the better long-term method of analyzing the data because it provides access
to data that may be hidden in the individual disks and would not be acquired by collecting
only the RAID volume. There is always a risk, though, of using software, in either Linux or
third-party tools, that does not use an official specification because it could have errors and
not produce an accurate version of the original RAID volume.

116

General Analysis Comments

Investigating a system with a RAID volume can be difficult because they are not frequently
encountered and not every implementation is the same. Be very careful when trying different
acquisition techniques that you do not modify the original disks in the process. Use hardware
write-blockers or the read-only jumper on the individual hard disks to prevent modifications.
It may also be useful to make images of the individual disks before you make an image of the
full RAID volume. The individual disk images may contain hidden data that are not in the
final RAID volume. No cases involving hidden RAID data have been published, but it could
be possible depending on whom you are investigating. It is also possible that the entire disk is
not being used for the RAID. Some RAID systems use only part of the hard disk so that it is
easier to replace the disk if it fails. For example, only 40GB of each individual disk in the
RAID volume could be used, regardless if each individual disk is 40GB or 80GB. The unused
area may contain data from a previous usage or be used to hide data.

Summary

This section has given an overview of RAID. RAID is common in high-end servers and is
becoming more common in desktop systems that need performance or large amounts of disk
space. The low-level details were not given because they vary by implementation and there is
no single standard. More details will be given later in the "Disk Spanning" section because
many systems incorporate software RAID in their volume management support.

The key concept for investigations is to practice acquiring RAID systems. If possible, it is
easiest to acquire the full RAID volume at the scene and then perform analysis using standard
tools. The problems with this approach are that it requires a very large disk to save the data
to, and there could be data on the individual disks that are not shown in the final RAID
volume. Therefore, it is safest to always acquire the individual disks as well.

Disk Spanning

Disk spanning makes multiple disks appear to be one large disk. Disk spanning is frequently
discussed with RAID because many software RAID solutions also provide disk spanning, but
disk spanning offers no redundancy or performance benefits. It is used to create large storage
systems, and some versions allow you to add disks and dynamically increase the size of the
file system.

Many operating systems now include disk spanning, and in this section we cover the software
solutions that come with Microsoft Windows and Linux. Other systems, such as Sun Solaris,
IBM AIX, and Apple OSX, come with their own versions of disk spanning, but they are not
covered here. The first part of this section covers the basic concepts and provides some
general definitions that are used in all implementations. Then we cover the Windows and
Linux systems. This section, like the previous RAID section, does not provide answers to
every problem that you may encounter because not all the answers are known. This section
describes how disk spanning works so that you can have a better understanding about why
tools may not exist that meet all your needs.

Overview

The main theory behind disk spanning is similar to using a three-ring binder for taking notes
instead of a spiral notebook. When you use all the pages in the spiral notebook, you must buy
a new one and carry both of them around. When you use all the pages in the three-ring
binder, you can add more pages to the end of it and even use a larger binder if needed. With
disk spanning, the storage space from new disks is appended to the end of the existing storage
space. Figure 7.6 shows an example where there are two disks being used for spanning, and

117

each disk holds 100 data blocks. Blocks 0 to 99 are written to disk 1, and blocks 100 to 199
are written to disk 2.

Figure 7.6. Disk spanning with 100 units on the first disk and 100 units on the second disk.

L — —
DO D100

e e e —
D1 D101

e — e —
D2 D102

]]
D3 D103

e —
D99 D199

e —— e ——

Disk 1 Disk 2

A logical volume is the output of the disk-spanning software. The logical volume is made up
of multiple physical disks or partitions that are sequentially merged together. Many systems
also have disk groups, which are groups of physical disks, and only disks in the same group
can be combined to make a logical volume. Figure 7.7 shows the relationship between the
levels of abstraction. It contains three physical disks that are grouped into one disk group.
The disks are spanned to form two logical volumes.

Figure 7.7. Terms and relationships for disk-spanning systems.

~_
e

Physical
Disk 1

"l-u.._____u_._...-l"

Logical
Volume 1

—
R

Physical || Disk
Disk 2 Group 1
i S

Logical
Volume 2

—_
o]

Physical
Disk 3

"-..___“_u_._,.rl"

Linux MD

There are two methods of disk spanning in Linux. The MD driver, which we previously saw
with RAID systems, also can perform basic disk spanning, and there is also the more

118

advanced system called the Logical Volume Manager (LVM). Both systems come with major
Linux distributions, and this section examines MD devices. We are covering Linux before
Windows because the Linux drivers can be used to analyze a Windows system.

Background

The MD driver uses normal DOS-based partitions and groups them together to form a RAID
or disk-spanning volume. Each disk can have multiple partitions and each can be used in a
different RAID or logical volume. There is no notion of disk groups in this model. There is a
configuration file, /etc/raidtab, that lists which partitions go in which order, and the
volume cannot be mounted unless it is configured in this file. The configuration file has the
same layout as was described in the previous RAID section except that the 'raid-level' setting
is set to 'linear.’ An example configuration file for a logical volume with two partitions
(/dev/hdbl and /dev/hddl) is

cat /etc/raidtab

raiddev /dev/md0
raid-level linear
nr-raid-disks 2
nr—-spare—-disks 0
persistent-superblock 1

chunk-size 4k

device /dev/hdbl
raid-disk 0

device /dev/hddl
raid-disk 1

This kernel reads the configuration file and creates a device, /dev/md0, that can be mounted
and used as a single volume, but it really combines the storage space of /dev/hdb1l and
/dev/hdd1.

If the 'persistent’ superblock value is set to 0, then the only configuration data for the device
is in the /etc/raidtab file. If the value is set to 1, each disk or partition contains
configuration data at the end of it that allows the auto-detect feature of Linux to automatically
create the MD device. For the auto-detect process to work with Linux, the DOS partition that
it is located in must have a partition type of Oxfd. You can see if the device was created
during the boot by looking at the /var/log/messages log file. The auto-detect process
occurs when the 'md' kernel module is loaded.

If the disks or partitions contain the persistent superblock, they have a 1024-byte structure
that is broken up into sections. The first section contains settings about the resulting disk
spanning or RAID volume, such as versions, the number of disks, creation time, and
identifiers. The second section contains general information, such as the last update time, a
counter, the state of the volume, and the number of working and failed disks. The remaining
sections contain information about each of the disks in the volume, including the major and
minor numbers of the device, the role of the device in the volume, and the disk's state. As we
will see in the analysis section, a typical Linux system updates the values in the superblock
when it boots, even if the volume is never mounted. Using the superblock, the kernel can
determine if the disks have been removed from the system and placed in a different order.

Acquisition and Analysis

To analyze the data on a MD volume, your best bet is to acquire the volume as a single drive
or partition and use standard analysis tools. The easiest scenario is if the volume has a
persistent superblock. Otherwise, you will have to create the /etc/raidtab file on your
acquisition system. If you need to create the raidtab file, then you should try to access the
/etc/ directory on the original and use it as a base.

119

After the configuration file has been created, the MD device can be created using the
raidstart command. That makes a device in the /dev/ directory based on the name given
in the configuration file, and the volume can be acquired with dd or a similar tool. After the
acquisition, the raidstop command needs to be executed to stop the MD device. If there is a
persistent superblock, be aware that some of the values in the superblock are updated when
you make a new raid device with raidstart. Ensure that you have backup images of the
disks and try ATA or SCSI write blockers if you have them.

If the partition type for each of the DOS partitions in the volume is set to Oxfd, the persistent
superblock exists, and the system is set to autodetect MD devices—a device will be created
during startup. As with executing raidstart, this process updates the 'last update' time, the
counter, and the corresponding checksum value in the superblock. This occurs even when the
MD volume is not mounted!

If you place the disks into a system in a different order and location from where they
originally were, the superblock will be rewritten. This happens even if the volume is not
mounted, so care must be taken to reduce the changes to each disk. Furthermore, I have
experienced problems when I had only one of two disks in the analysis system when I booted.
The counter on that disk increased, but when I booted next with both disks, Linux would not
create the MD device because they had different counter values.

I have also found that when dealing with MD disks, it is best to get into the habit of not
keeping a raidtab file. It can be very dangerous because if you shut the system down and
put new disks in there, Linux will try and process them as a volume. You might consider
modifying your shutdown scripts to copy the raidtab file to another name so that it does not
exist for the next power on.

Bootable Linux CDs can be used to acquire MD volumes, and some autodetect the volume
while others do not and require that you make an /etc/raidtab file. If you can boot from a
CD and create the MD device, acquire that as normal. Otherwise, acquire each disk and
document which places they were in so that you minimize any modifications to the disk by
putting them in a different order. I have not been able to recreate MD volumes by using a raw
image of the original partitions or loopback devices. Therefore, you may need to restore the
images to a disk and extract the data from the disks in the lab.

Linux LVM

The second method of disk spanning in Linux is with LVM. This section describes the design
of LVM and acquisition techniques.

Background

LVM has a more advanced architecture than MD and uses the notion of disk groups, which it
calls volume groups. DOS partitions that are used with LVM have a partition type of 0x8e.
The disks or partitions in the volume group are divided into physical extents, which are equal-
sized containers and typically have a size that is several MBs. Each system can have one or
more volume groups and each volume group has a subdirectory in the /dev/ directory.

A logical volume is made up of logical extents, which have the same size as the physical
extents, and there is a mapping between each logical extent and physical extent. We can see
this in Figure 7.8, where a logical volume is created from three sets of physical extents from
two physical disks.

120

Figure 7.8. LVM organizes physical disks into physical extents that are mapped to logical
extents in the logical volume.

Volume

Physical Extents Group

IIIHHIHIIIIII

b o o e

Logical volumes can be implemented by either concatenating the available physical extents
or by using striping (where consecutive logical extents are on different disks). A 2GB
concatenated volume may have its first 1.5GB from disk 1 and the last S00MB from disk 2.
On the other hand, if the volume is striped, it may use two 1GB disks where the first IMB is
from disk 1, the second IMB from disk 2, the third 1IMB from disk 1, and so on. The logical

volumes are given a device file in the volume group subdirectory in /dev/.

The configuration data for a logical volume are stored on both the local system and in the
volumes. The local configuration files are stored in the /etc/lvmtab file and the
/etc/lvmtab.d/ directory. The configuration files are in a binary format and are updated
with the LVM utilities, such as vgimport, vgscan, and vgchange. The on-disk structure is
located at the beginning of the disk and contains information about the disk, the volume
group of which the disk is a member, and the logical volumes that the volume group has.
None of the fields in the structure is for a time value, so the structure is not updated when the
logical volume is created as occurs with MD devices.

Acquisition and Analysis

The analysis of an LVM system can be more automated than that of MD devices. The steps
that I will describe here are from my experience with current versions of LVM, and I have
verified them with LVM developers.[” LVM has the vgexport and vgimport utilities that
are supposed to be used when moving disks between systems, but I have found that they are
not needed for acquiring the disks. The vgexport utility removes the local configuration files
for the volume and writes the word "-EXPORT" in the volume group name on the disk. This
step is not needed for an investigation when removing the disks from the suspect system.

To analyze a LVM volume, you can either remove the disks from the system and place them
in a trusted Linux system or boot the suspect system from a bootable Linux CD with LVM
support. As we discussed with MD, it is safest to have your systems configured to not
automatically mount and configure logical volumes. When the analysis system is running,
execute the vgscan command to scan the devices for logical volumes. This automatically
creates the /etc/1vmtab file and configuration files in the /etc/1vmtab.d/ directory. After
the configuration files have been created, the vgchange -a y command is needed to activate
the volumes that were found in the scan. With LVM, the location and master or slave
configuration of the disks is not important. When the volume has become active, you can dd
it from the volume device in /dev/. In my experience, using the vgscan and vgchange
commands does not change the MD5 value of the disks. The command sequence can be

1 Email communication with Heinz Mauelshagen and A. J. Lewis. November 17, 2003.

121

found here where the system was booted from The Penguin Sleuth Kit (note that the Penguin
Sleuth Kit is not related to The Sleuth Kit analysis tools). The Penguin Sleuth Kit is available

at http://www.linux-forensics.com.

vgscan

vgscan —— reading all physical volumes (this may take a while...)

vgscan —— found inactive volume group "vg big2"

vgscan —— "/etc/lvmtab" and "/etc/lvmtab.d" successfully created

vgscan —— WARNING: This program does not do a VGDA backup of your volume group

vgchange -a y

vgchange —— volume group "vg _big2" successfully activated

Note that this behavior could change in future versions of LVM, so test your procedures
before you perform these actions on a real system and make disk backups before merging the
volumes.

Microsoft Windows LDM

Microsoft has included support for disk spanning since Windows NT. This section will
describe the design of Windows LDM and acquisition techniques.

Dynamic Disks

LDM is responsible for managing the logical volumes in Windows 2000, and XP. LDM
supports simple volumes that are similar to basic partitions, disk spanning, RAID Level 0
(splitting), RAID Level 1 (mirroring), and RAID Level 5. The RAID capabilities were briefly
discussed earlier in the chapter and they will be discussed in more detail here.

Basic disks are those that we saw in Chapters 5 and 6. These disks have a DOS or GPT
partition table, and each partition is self-contained. Basic disks cannot be used with LDM. A
dynamic disk has additional data structures to make partitions that can be used to make
logical volumes. We will now discuss dynamic disks in more detail.

A dynamic disk has two important areas. The LDM partition area consumes most of the disk,
and it is where dynamic partitions are created. The last IMB of the dynamic disk is allocated
to the LDM database. The LDM database contains entries to describe how the partition area
is organized and how logical volumes should be created.

Figure 7.9. The layout of a dynamic disk in an IA32 system where the LDM data structures are
inside a DOS partition.

:

0x42 Type DOS Partition

\

LDM Partition Area |

LDM Database

Each dynamic disk in an IA32 system has a DOS-based partition table in the first sector so
that legacy systems will know that the disk is being used. The partition table has only one
entry, and it spans the entire disk with a partition type of 0x42. The LDM partition area and

122

database are located inside this DOS partition, as shown in Figure 7.9. We can see the
partition table here using mm1s from The Sleuth Kit:

mmls -t dos vdisk.dd
DOS Partition Table
Units are in 512-byte sectors

Slot Start End Length Description
00: —-———- 0000000000 0000000000 0000000001 Primary Table (#0)
01: -—-——— 0000000001 0000000062 0000000062 Unallocated

02: 00:00 0000000063 0120101939 0120101877 Win LVM / Secure FS (0x42)
Each dynamic disk in an IA64 (Intel Itanium, and so on) system has a GPT partition for the
partition area and a partition for the LDM database. There are specific partition types for
these partitions.

Windows supports only one disk group, so all dynamic disks are automatically assigned to it.
The partition area of each dynamic disk can be partitioned into dynamic partitions. Dynamic
partitions from one or more disks are grouped to make logical volumes. We can see this
relationship in Figure 7.10. It is important in this section to distinguish between the terms that
Microsoft uses for dynamic disks versus DOS partitions. With DOS partitions, Microsoft
considers logical volumes to be partitions that are inside an extended partition, whereas with
dynamic disks all partitions that can contain a file system or other data are called logical
volumes.

Figure 7.10. A LDM logical volume is made up of dynamic partitions from a disk group.

Dynamic rf”erﬁh“ﬁTf”ﬁihﬂhhw pﬂﬁftjf#r!ﬁﬁﬁhi rf’#r!1ﬁﬁm1
Disk 1
‘u_“_*
Dkynami,: Disk \f/
Partition Group :
Dynamic I ¥ 1‘ E r' \
Disk 2 ~— !

The LDM Database

The LDM database is where the dynamic partitions are defined and where the rules for
creating the logical volumes can be found. Microsoft has not published the exact layout and
structures of the LDM database, but groups on the Internet have identified some of the
internal data structures (one of the groups, Linux NTFS, is available at http://linux-
ntfs.sourceforge.net). From the published Microsoft references [Soloman and
Russinovich 2000], we know that the LDM database has four major sections. The Private
Header is similar to the boot sector of a file system. It describes the unique characteristics of
the disk and the logical volume. This structure contains a unique ID for the disk (its Windows
Globally Unique Identifier (GUID)) and the name of the disk group. Windows has only one
disk group, which is based on the name of your computer. The Table of Contents section is
next, and its size is 16 sectors. According to Solomon and Russinovich, it "contains
information regarding the databases' layout," which refers to the next section of the LDM, the
database.

The database area has entries to describe disks, partitions, components, and volumes. A disk
entry exists for each dynamic disk, which could be a DOS or GPT disk. The partition entries
are used to describe how the dynamic disks are partitioned. The component entries are used
to describe how the partitions should be merged. Each of the partition entries points to the

123

component entry that it uses. Component entries exist for spanning, splitting, and mirroring.
Lastly, the volume entries are used to describe a logical volume, which is the result of
applying the component type to the partitions.

I'll give an example using two dynamic disks. We have a logical volume, and the first part of
the volume is from a 15MB partition on disk 1, the second part is from a 10MB partition on
disk 2, and the final part is from a 20MB partition on disk 1. Obviously, these sizes are much
smaller than we would ever encounter in the real world. This is the same basic layout that

was shown in Figure 7.10. The dmdiag.exe tool from Microsoft (available at
http://www.microsoft.com/window2000/techinfo/reskit/tools/existing/dmdiag—

o.asp) displays the entries in the database and the relevant output is as follows:

Disk: Diskl rid=0.1027 updated=0.1122

assoc: diskid=6a565b54-b83a-4ebb-95eb-842ede926e88
flags:

Disk: Disk2 rid=0.1063 updated=0.1112

assoc: diskid=533fed4ab-0409-4ea6-98b3-9648bbc3bdl2
flags:

The previous two records are the disk entries for the two physical disks. Disk1 has an ID of
0.1027, and Disk2 has an ID of 0.1063.

Group: hashDgl rid=0.1025 update=0.1028

id: dgid=d4£40362-7794-429a-a6ad-a6dfc0553cee
diskset: id=00000000-0000-0000-0000-000000000000
copies: nconfig=all nlog=all

minors: >= 0

The previous record is a disk group entry and shows that the disk group is named with the
computer name, hash.
Subdisk: Diskl-01 rid=0.1109 updated=0.1112

info: disk=0.1027 offset=0 len=30720 hidden=0
assoc: plex=0.1107 (column=0 offset=0)

Subdisk: Diskl-02 rid=0.1121 updated=0.1122
info: disk=0.1027 offset=30720 l1len=40960 hidden=0
assoc: plex=0.1107 (column=0 offset=51200)

The previous two entries are partition entries for the physical disk named Disk1 (ID: 0.1027).
They both have a 'plex' value of 0.1107, which refers to the component entry that is used to
make the logical volume. The first entry, ID 0.1109, is for the 15MB partition and has a
sector offset of 0 and a length of 30,720 sectors. The second entry, ID 0.1121, is for the
20MB partition and has an offset of sector 30,720 with a length of 40,960 sectors.

Subdisk: Disk2-01 rid=0.1111 updated=0.1112

info: disk=0.1063 offset=0 1len=20480 hidden=0
assoc: plex=0.1107 (column=0 offset=30720)

The previous entry is a dynamic partition entry on Disk2 (ID: 0.1063). It is a partition with
ID 0.1111 with an offset of 0 sectors and a length of 20,480 sectors. We can see the
relationship between the physical disk and dynamic partition entries in Figure 7.11. The
direction of the arrow shows that the dynamic partition entries contain a pointer to the
physical disk.

124

Figure 7.11. Relationship between the physical disk and dynamic partition entries in the LDM

database.

Physical Disk
Disk1
1D: 0.1027

AN

Physical Disk
Disk2
1D: 0.1063

Dynamic Partition
Disk1-01
ID: 0.1109

Plex:
type:
state:
assoc:

Dynamic Partition
Disk1-02
ID: 0.1121

T

Volumel-01 rid=0.1107 update=0.1124

layout=CONCAT
state=ACTIVE
vol=0.1105

Dynamic Partition
Disk2-01
ID: 0.1111

The previous record is a disk-spanning (CONCAT) component entry that describes how the
dynamic partitions should be combined to create a logical volume. We can see that it has an
ID of 0.1107, which we saw in each of the partition entries. We also see that it is associated
with Volume ID 0.1105, which is shown next.

Volume:
info:
type:
state:
policies:
flags:

Volumel rid=0.1105 update=0.1124 mountname=F:

1len=92160 guid=e40794d0-6e3c-4788-af3d-££49d2ce769d

parttype=7 usetype=gen

state=ACTIVE
read=SELECT
writeback

Lastly, we see the previous record, which is for a volume entry for the logical volume. Its
mounting point is F: \, and its length is 92,160 sectors. We see that it has an ID of 0.1105 and
a name of 'Volumel.' The relationship of these records can be seen in Figure 7.12. Note that

all disks in the disk group contain the same database entries.

Figure 7.12. Relationship between the entries in the LDM database. The arrow direction shows
which objects have pointers to other objects.

Physical Disk
Disk1
ID: 0.1027

AN

Dynamic Partition
Disk1-01
ID: 0.1109

Dynamic Partition
Disk1-02
ID: 0.1121

N

Component
Volume1-01
ID: 0.1107

Y

Logical Volume
Volume
ID: 0.1105

Physical Disk
Disk2
ID: 0.1063

A

Dynamic Partition
Disk2-01
ID: 0.1111

~

125

We can see the final layout and organization of the logical volume in Figure 7.13. Notice that

the order of the dynamic partitions is not consecutive in the logical volume.

Figure 7.13. Layout of example LDM disk with two physical disks, three dynamic partitions,

and one logical volume.

, Disk1-01 Disk1-02 Disk2-01 ,
Disk1 Len: 30720 Len: 40960 Len: 20480 Disk2
Volume1 Offset: 0 Offset: 30720 Offset: 51200
Len: 30720 Len: 20480 Len: 40960

The final section of the LDM database is the Tramnsactional Log, and it is a log of
modifications to the LDM. In case of power failure or crash, this is used to put the disk in a
safe state.

Acquisition and Analysis

Analysis of any logical volume is difficult, especially when it is implemented in software,
and it is not trivial to recreate the volume in a read-only fashion. As previously mentioned in
the "RAID" section, the analysis of the system is easiest when the logical volume is acquired
and standard analysis tools are used. However, this is not always possible within Windows
because it attempts to mount the disks when it boots. Acquiring a mounted file system can
result in a corrupt image, and the mounting may modify data. There is also a risk when
moving LDM disk groups between computers. Windows supports only one disk group at a
time, and any dynamic disks are added to the local group, if one exists [Microsoft 2003].
Therefore, if dynamic disks from a suspect system are imported into an analysis system with
dynamic disks, the suspect disks are added to the local disk group, and this requires the OS to
write new data to the LDM database.

The Linux kernel comes with support for LDM disk spanning, although it is not always
enabled by default. You may need to recompile the kernel if your distribution has not enabled
it. If your kernel supports LDM, Linux will read the database and create hard disk devices for
each of the physical partitions in each dynamic disk. For example, if we booted Linux with
the two disks from the previous example, we could have had /dev/hdbl, /dev/hdb2, and
/dev/hdd1l devices. We would then have to create an /etc/raidtab file to describe the
layout so that the MD kernel driver could make a single device for them. If /dev/hdb1 had
the first partition, /dev/hdd1l had the second, and /dev/hdb2 had the third, the following
would be the raidtab file:

raiddev /dev/md0
raid-level linear
nr-raid-disks 3
nr—-spare—-disks 0
persistent-superblock 0

chunk-size 4k

device /dev/hdbl
raid-disk 0

device /dev/hddl
raid-disk 1

device /dev/hdd2
raid-disk 2

126

In the case of a 'linear' RAID volume, the chunk-size can be any size, but it must exist.
EnCase by Guidance Software and ProDiscover from Technology Pathways can import the
individual images from a Windows logical volume and merge them together.

If only disk spanning is used, you can manually extract the partitions and put them together
manually from the disk images. We saw the layout details in the dmdiag.exe output, but that
tool can only examine the disks from within Windows and needs to have the disks mounted.
Therefore, we will use a different tool from Linux. The Linux NTFS group has developed the
ldminfo tool (http://linux-ntfs.sourceforge.net/status.html#ldmtools) and it
examines the LDM database entries of a Windows dynamic disk and displays them in detail
when the —--dump flag is given. It can be run on any of the raw devices or disk images in the
volume span because all disks contain the same database entries. The output contains all the
same detailed info as dmdiag.exe did, but we will only focus on the volume layout
information from the example we previously used:

ldminfo —-dump diskl.dd

VOLUME DEFINITIONS:

Volumel Size: 0x00016800 (45 MB)

Disk1l-01 VolumeOffset: 0x00000000 Offset: 0x00000000 Length: 0x00007800
Disk2-01 VolumeOffset: 0x00007800 Offset: 0x00000000 Length: 0x00005000
Disk1l-02 VolumeOffset: 0x0000C800 Offset: 0x00007800 Length: 0x0000A000

This output shows us that there are three partitions in the volume from two disks. We can
easily re-create the disk because it is using spanning and not splitting. We previously saw
from the output of mm1s on the disk image that the partition area begins in sector 63.
Therefore, we need to add 63 to the disk offset values that we see in the 1dminfo output
because those values are relative to the start of the partition area. The first partition is
extracted by extracting 30,720 sectors (0x7800) from the partition area of the first disk:

dd if=diskl.dd skip=63 count=30720 > span.dd
The second part of the disk span is from the first part of the second disk. We will append this

data to the end of the data from the first disk. Therefore, we will extract the first 20,480
sectors (0x5000) from the partition area of the second disk:

dd if=disk2.dd skip=63 count=20480 >> span.dd
The final part of the disk span comes from the partition area of the first disk. It will be
appended to the end of what we extracted from the second disk. It starts in sector 30,720

(0x7800) of the partition area; therefore, it is sector 30,783 relative to the start of the disk,
and its length is 40,960 sectors.

dd if=diskl.dd skip=30783 count=40960 >> span.dd
We can now process the span.dd image as a normal file system image. If you have LDM
support from the kernel, then I would recommend that you try that before doing it by hand.

Also note that most third-party support drivers and tools for LDM have not been developed
from a detailed specification from Microsoft and, therefore, may not be correct.

Bibliography
Lewis, A. J. "The LVM HOWTO." The Linux Documentation Project, 2002—2004.
http://tldp.org/HOWTO/LVM-HOWTO/.

Microsoft. "Description of Disk Groups in Windows Disk Management." Microsoft
Knowledge Base Article 222189, November 21, 2003.
http://support.microsoft.com/kb/222189.

127

Microsoft. Microsoft Windows XP Professional Resource Kit Documentation, 2004.
http://www.microsoft.com/resources/documentation/Windows/XP/all/reskit/en—

us/prork_overview.asp.
Ostergaard, Jakob. "The Software-RAID HOWTO." The Linux Documentation Project, June
3,2004. nttp://www.tldp.orqg/HOWTO/Software—-RAID-HOWTO.html.

Patterson, David A., Garth Gibson, and Randy H. Katz. "A Case for Redundant Arrays of
Inexpensive Disks (RAID)." ACM SIGMOD International Conference on Management of
Data, June 1988.

PC Guide. "Redundant Arrays of Inexpensive Disks." April 17, 2001.
http://www.pcguide.com/ref/hdd/perf/raid/index.htm.

Solomon, David, and Mark Russinovich. Inside Microsoft Windows 2000. 3rd ed. Redmond:
Microsoft Press, 2000.

Sourceforge.net. "LDM Documentation." Linux NTFS Project, 2002. http://linux-

ntfs.sourceforge.net/ldm/index.html.

128

Part lll: File System Analysis
Chapter 8. File System Analysis

File system analysis examines data in a volume (i.e., a partition or disk) and interprets them
as a file system. There are many end results from this process, but examples include listing
the files in a directory, recovering deleted content, and viewing the contents of a sector.
Recall that analyzing the contents of a file is application-level analysis and is not covered in
this book. In this chapter, we look at the general design of file systems and different analysis
techniques. This chapter approaches the topic in an abstract fashion and is not limited to how
a specific tool analyzes a file system. Instead, we discuss the analysis in general terms. The
remaining nine chapters discuss how specific file systems are designed and what is unique
about them with respect to digital investigations.

What is a File System?

The motivation behind a file system is fairly simple: computers need a method for the long-
term storage and retrieval of data. File systems provide a mechanism for users to store data in
a hierarchy of files and directories. A file system consists of structural and user data that are
organized such that the computer knows where to find them. In most cases, the file system is
independent from any specific computer.

For an analogy, consider a series of filing cabinets in a doctor's office . The fictitious
National Association of Medical Record Filing Procedures (NAMRFP) could specify that all
patient records must be organized into filing cabinets and sorted by the last name of the
patient. The tag that is used to identify the record must be typed in English and have the last
name followed by the first name. Any person trained in this procedure would be able to file
and retrieve patient records at an office that uses the procedure. It doesn't matter if the office
has 100 patients and one filing cabinet or 100,000 patients and 25 filing cabinets. All that
matters is that the person recognizes what a filing cabinet is, knows how to open it, and
knows how to read and create the tags. If that person visited an office that used the National
Association of Medial Record Stacking Procedures method where all records were stacked in
a corner, his filing cabinet training would be useless and he would not be able to find the
needed records.

File systems are similar to these record-storing procedures. File systems have specific
procedures and structures that can be used to store one file on a floppy disk or tens of
thousands of files in a storage array. Each file system instance has a unique size, but its
underlying structure allows any computer that supports the type of file system to process it.

Some data needs internal structure and organization inside the file. This is not unlike physical
documents needing structure in the form of sections and chapters. The internal structure of a
file is application dependent and outside the scope of this book. This book is concerned about
the procedures and techniques needed to obtain the data inside of a file or the data that are not
allocated to any file.

Data Categories

As we examine each of the different file system types in this part of the book, it will be useful
to have a basic reference model so that the different file systems can be more easily
compared. Having such a reference model also makes it easier to determine where your
evidence may be located. For example, a reference model makes it easier to compare the
difference between FAT and Ext3 file systems. For this basic model, we will use five
categories: file system, content, metadata, file name, and application. All data in a file system

129

belong to one of the categories based on the role they play in the file system. We will use
these categories throughout this book when describing file systems, although some file
systems, namely FAT, cannot be applied to this model as easily as others can. The tools in
The Sleuth Kit (TSK) are based on these same categories.

The file system category contains the general file system information. All file systems have a
general structure to them, but each instance of a file system is unique because it has a unique
size and can be tuned for performance. Data in the file system category may tell you where to
find certain data structures and how big a data unit is. You can think of data in this category
as a map for this specific file system.

The content category contains the data that comprise the actual content of a file, which is the
reason we have file systems in the first place. Most of the data in a file system belong to this
category, and it is typically organized into a collection of standard-sized containers. Each file
system assigns a different name to the containers, such as clusters and blocks, and I will use
the general term data units until we discuss specific file systems.

The metadata category contains the data that describe a file; they are data that describe data.

This category contains information, such as where the file content is stored, how big the file

1s, the times and dates when the file was last read from or written to, and access control

information. Note that this category does not contain the content of the file, and it may not

contain the name of the file. Examples of data structures in this category include FAT

directory entries, NTFS Master File Table (MFT) entries, and UFS and Ext3 inode structures.
Figure 8.1. Interaction between the five data categories.

File System Category Application Category
rCTTT T T T T T T T | rTTTT T T T T T T T |
| | | |
' | Layoutand Size | ! ' |
: Information : : Quota Data :
| I I I
| S 1 T 4

File Mame Metadata Contant
Category Category Category
coTTTTT T 1 oo T P T T T T T T T T T I
E a : i | i
I] | : [:
' j ' | | Timesand : Lyl Gontent Data #1
: filet txt ; : - Addresses .,_J___H__H__Lh :
I I I | i L
I : | : | Content Data #2 :
| a | i | |
! \ | : | |
] | . |
Times and I I
1 I ——— = Content Data #1
i fle2.txt T Addresses ' |
I
I
X I

The file name category, or human interface category, contains the data that assign a name to
each file. In most file systems, these data are located in the contents of a directory and are a
list of file names with the corresponding metadata address. The file name category is similar
to a host name in a network. Network devices communicate with each other using IP
addresses, which are difficult for people to remember. When a user enters the host name of a
remote computer, the local computer must translate the name to an IP address before
communication can start.

130

The application category contains data that provide special features. These data are not
needed during the process of reading or writing a file and, in many cases, do not need to be
included in the file system specification. These data are included in the specification because
it may be more efficient to implement them in the file system instead of in a normal file.
Examples of data in this category include user quota statistics and file system journals. These
data can be useful during an investigation, but because they are not needed to write and read a
file, they could be more easily forged than other data.

We can see the relationship between the five categories in Figure 8.1.

Essential and Non-Essential Data

In Chapter 1, "Digital Investigation Foundations," we discussed the difference between
essential and non-essential data, and I will quickly review it again. Essential file system data
are those that are needed to save and retrieve files. Examples of this type of data include the
addresses where the file content is stored, the name of a file, and the pointer from a name to a
metadata structure. Non-essential file system data are those that are there for convenience but
not needed for the basic functionality of saving and retrieving files. Access times and
permissions are examples of this type of data.

Why is it important to differentiate between essential and non-essential data? It is important
because we have to trust the essential data, but we do not have to trust the non-essential data.
For example, all file systems have some value that points to where the file content is stored.
This value is essential because it needs to be true. If it is false, the user will not be able to
read the file. On the other hand, a time value or a User ID is not essential because it does not
need to be true. If the time value is never updated, it will not affect the user when she tries to
read from or write to the file. Therefore, we should trust the essential data more than the non-
essential data because it is required and it is needed for the file system to save and restore
files.

Some OSes may require a certain value to be set, but that does not mean it is essential. For
example, a very strict (and fictitious) OS might not mount a file system that has any files with
a last access time that is set in the future. Another OS may not have a problem with the times
and will mount the file system and save data to it. Microsoft Windows requires that all FAT
file systems start with a certain set of values even though they are used only when the file
system is bootable. Linux, on the other hand, has no requirements for those values.

When viewed this way, it becomes apparent that knowing the OS that wrote to the file system
is just as important as knowing the type of file system. When discussing file recovery, it is
not enough to ask how to recover a file from a FAT file system. Instead, ask how to recover a
file that was deleted in Windows 98 on a FAT file system. Many OSes implement FAT file
systems, and each can delete a file using different techniques. For example, most OSes do the
minimal amount of work needed to delete a file, but there could be others that erase all data
associated with the file. In both cases, the end result is a valid FAT file system.

In this book, we will focus on the essential data. When available, I will describe application-
specific, non-essential information. However, it is important for an investigator to verify and
test the application-specific behavior in the context of a specific incident.

Analysis by Category

The remainder of this chapter and book use the five data categories to describe analysis
techniques. In Chapter 1, we saw that we look for evidence by identifying the properties that
it should have and where we expect to find it. Based on where we expect to find the evidence,
we can identify the appropriate data category and analysis techniques to search for it. For
example, if we are searching for files with the "JPG" extension, we will focus on file name
category analysis techniques. If we are searching for a file with a certain value i